【题目】如图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的边QM在BC上,其余两个项点P,N分别在AB,AC上.
(1)当矩形的边PN=PQ时,求此时矩形零件PQMN的面积;
(2)求这个矩形零件PQMN面积S的最大值.
【答案】(1)矩形零件PQMN的面积为2304mm2;(2)这个矩形零件PQMN面积S的最大值是2400mm2.
【解析】
(1)设PQ=xmm,则AE=AD-ED=80-x,再证明△APN∽△ABC,利用相似比可表示出,根据正方形的性质得到(80-x)=x,求出x的值,然后结合正方形的面积公式进行解答即可.
(2)由(1)可得,求此二次函数的最大值即可.
解:(1)设PQ=xmm,
易得四边形PQDE为矩形,则ED=PQ=x,
∴AE=AD-ED=80-x,
∵PN∥BC,
∴△APN∽△ABC,
,
即,
,
∵PN=PQ,
,
解得x=48.
故正方形零件PQMN面积S=48×48=2304(mm2).
(2)
当时,S有最大值==2400(mm2).
所以这个矩形零件PQMN面积S的最大值是2400mm2.
科目:初中数学 来源: 题型:
【题目】我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有 成立,所以,当时,有最小值0.
(应用):(1)代数式有最小值时, ;
(2)代数式的最小值是 ;
(探究):求代数式的最小值,小明是这样做的:
∴当时,代数式有最小值,最小值为5.
(3)请你参照小明的方法,求代数式的最小值,并求此时a的值.
(拓展):(4)若,直接写出y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(t,0),B(t+2,0).对于线段AB和点P给出如下定义:当∠APB=90°时,称点P为线段AB的“直角点”.
(Ⅰ)当t=﹣1时,点C(0,1),判断点C是否为线段AB的“直角点”,并说明理由;
(Ⅱ)已知抛物线y=ax2+bx(a>0,b<0)的顶点为M,与x轴交于A(t,0),B(t+2,0),若点M为线段AB的“直角点”,求出此抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,,,点、分别是、的中点,连接.
(1)在图①中,的值为______;的值为______.
(2)若将绕点逆时针方向旋转得到,点、的对应点为、,在旋转过程中的大小是否发生变化?请仅就图②的情形给出证明.
(3)当在旋转一周的过程中,,,三点共线时,请你直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
(1)小贤随机掷一次骰子,求落回到圈的概率.
(2)小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
根据以上数据,估算袋中的白棋子数量为( )
A. 60枚B. 50枚C. 40枚D. 30枚
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店在服装销售中发现:进货价每件60元,销售价每件100元的某服装每天可售出20件,为了迎接新春佳节,服装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件服装降价1元,那么每天就可多售出2件.
(1)如果服装店想每天销售这种服装盈利1050元,同时又要使顾客得到更多的实惠,那么每件服装应降价多少元?
(2)每件服装降价多少元时,服装店每天可获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,∠C=90°,点O在AC上,以AO为半径的⊙O交AB于D, BD的垂直平分线交BD于F,交BC于E,连接DE.
(1)求证:DE是⊙O的切线;
(2)若∠B=30°,BC=,且AD∶DF=1∶2,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com