精英家教网 > 初中数学 > 题目详情
(2012•顺义区一模)如图,在平面直角坐标系xOy中,抛物线y=mx2+2mx+n经过点A(-4,0)和点B(0,3),
(1)求抛物线的解析式;
(2)向右平移上述抛物线,若平移后的抛物线仍经过点B,求平移后抛物线的解析式;
(3)在(2)的条件下,记平移后点A的对应点为A′,点B的对应点为B′,试问:在平移后的抛物线上是否存在一点P,使△OA′P的面积与四边形AA′B′B的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
分析:(1)将点A及点B的坐标代入抛物线方程,利用待定系数法求出m、n即可.
(2)令y=3,解出x的值,从而根据平移后的抛物线仍经过点B,可得出平移的长度,继而可得出平移后抛物线的解析式.
(3)先求出四边形AA′B′B的面积,然后设P点的纵坐标为yP,利用面积相等可得出方程,解出即可得出点P的坐标.
解答:解:(1)由题意得,抛物线y=mx2+2mx+n经过点A(-4,0)和点B(0,3),
故可得:
16m-8m+n=0
n=3.

解得:
m=-
3
8
n=3.

即抛物线的解析式为:y=-
3
8
x2-
3
4
x+3


(2)令y=3,得-
3
8
x2-
3
4
x+3=3
,得x1=0,x2=-2,
∵抛物线向右平移后仍经过点B,
∴抛物线向右平移2个单位,
y=-
3
8
x2-
3
4
x+3
=-
3
8
(x2+2x+1)+
3
8
+3
=-
3
8
(x+1)2+
27
8

∴平移后的抛物线解析式为y=-
3
8
(x-1)2+
27
8


(3)由抛物线向右平移2个单位,得A'(-2,0),B'(2,3),
又∵四边形AA'B'B为平行四边形,
∴其面积=AA'•OB=2×3=6,
设P点的纵坐标为yP,由△OA'P的面积=6,
故可得
1
2
OA′•|yP|=6
,即
1
2
×2•|yP|=6

解得:|yP|=6,yP=±6,
当yP=6时,方程-
3
8
(x-1)2+
27
8
=6
无实根,
当yP=-6时,方程-
3
8
(x-1)2+
27
8
=-6
的解为x1=6,x2=-4.
故点P的坐标为(6,-6)或(-4,-6).
点评:此题考查了二次函数的综合题,综合考察的知识点较多,本题的关键之处是第二问,需要我们确定平移的长度,在第三问的求解中注意方程思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•顺义区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区一模)分解因式:5x3-10x2y+5xy2=
5x(x-y)2
5x(x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区一模)下列运算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区一模)如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为
3
3
π
3
3
π
;经过18次这样的操作菱形中心O所经过的路径总长为
(4
3
+2)π
(4
3
+2)π
;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为
2
3
+1
3
2
3
+1
3
.(结果都保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区一模)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为
60°
60°
,点E落在
AB的中点处
AB的中点处
,容易得出BE与DE之间的数量关系为
BE=DE
BE=DE

(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

同步练习册答案