精英家教网 > 初中数学 > 题目详情

已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
(1)求证:△BFC≌△DFC;
(2)求证:AD=DE;
(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.

证明:
(1)∵DC=BC,∠1=∠2,CF=CF,
∴△DFC≌△BFC(SAS).

(2)延长DF交BC于G,
∵AD∥BG,AB∥DG,
∴四边形ABGD为平行四边形.
∴AD=BG.
∵△DFC≌△BFC,
∴∠EDF=∠GBF,DF=BF.
又∵∠3=∠4,
∴△DFE≌△BFG.
∴DE=BG,EF=GF.
∴AD=DE.

(3)∵EF=GF,DF=BF,
∴EF+BF=GF+DF,即:BE=DG.
∵DG=AB,
∴BE=AB.
∵C△DFE=DF+FE+DE=6,
∴BF+FE+DE=6,即:EB+DE=6.
∴AB+AD=6.
又∵AD=2,
∴AB=4.
∴DG=AB=4.
∵BG=AD=2,
∴GC=BC-BG=5-2=3.
又∵DC=BC=5,
在△DGC中∵42+32=52
∴DG2+GC2=DC2
∴∠DGC=90°.
∴S梯形ABCD=(AD+BC)•DG
=(2+5)×4
=14.
分析:(1)根据CF平分∠BCD,可知:∠1=∠2,又DC=BC,CF=CF,可证:△DCF≌△BCF;
(2)作辅助线,延长DF交BC于G,由AD∥BG,AB∥DG,可知:四边形ABGD为平行四边形,AD=BG,故证AD=DE只需证明BG=DE,由(1)可知:∠EDF=∠GBF,DF=BF,对顶角∠3=∠4,可证:△DFE≌△BFG,BG=DE,从而可证:AD=DE;
(3)由(1)(2)可知:EF=GF,DF=BF,可得:BE=DG,根据C△DFE=6,可得:EB+DE=AB+AD=6,已知AD的长,可求出AB,又AD=BG,BC=DC=5,可得CG=3,根据勾股定理逆定理可得:△DGC为直角三角形,即DG为梯形的高,代入梯形面积公式:S=(AD+BC)•DG计算即可.
点评:本题主要考查梯形性质的应用,求梯形的面积时关键是证明△DGC为直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案