精英家教网 > 初中数学 > 题目详情

如图,直线与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).

(1)求点P运动的速度是多少?
(2)当t为多少秒时,矩形PEFQ为正方形?
(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.

解:(1)∵直线与坐标轴分别交于点A、B,
∴x=0时,y=4;y=0时,x=8。∴BO=4,AO=8。∴
当t秒时,QO=FQ=t,则EP=t,
∵EP∥BO,∴△ABO∽△ARP。∴,即
∴AP=2t。
∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,
∴点P运动的速度是每秒2个单位长度。
(2)∵当OP=OQ时,PE与QF重合,此时t=,当点P、Q其中一点停止运动时,另一点也停止运动,
∴分0<t<<t≤4两种情况讨论:
如图1,当0<t<。即点P在点Q右侧时,若PQ=PE,矩形PEFQ为正方形,

∵OQ=FQ=t,PA=2t,
∴QP=8-t-2t=8-3t。
∴8-3t=t。
解得:t=2。
如图2,当<t≤4,即点P在点Q左侧时,若PQ=PE,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8-2t。



解得:t=4。
∴当t为2秒或4秒时,矩形PEFQ为正方形。
(3)同(2)分0<t<<t≤4两种情况讨论:
如图1,当0<t<时,Q在P点的左边
∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,

∴当t=时,S的最大值为
如图2,当<t≤4时,Q在P点的右边,
∵OQ=t,PA=2t,∴

∵当<t≤4时,S随t的增大而增大,∴t=4时,S的最大值为:3×42﹣8×4=16。
综上所述,当t=4时,S的最大值为:16。

解析试题分析:(1)根据直线与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出,据此可以求得点P的运动速度。
(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可。
(3)根据(2)中所求得出S与t的函数关系式,从而利用二次函数性质求出即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

抛物线与y轴交于点(0,3).
(1)求抛物线的解析式;(2分)
(2)求抛物线与坐标轴的交点坐标;(6分)
(3)① 当x取什么值时,y>0 ?
② 当x取什么值时,y的值随x的增大而减小?(4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线经过点A(6,0)、B(0,-4).

(1)求该抛物线的解析式;
(2)若抛物线对称轴与x轴交于点C,连接BC,点P在抛物线对称轴上,使△PBC为等腰三角形,请写出符合条件的所有点P坐标.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线与直线y=x交于点A,点B在直线上,∠BOA=90°.抛物线过点A,O,B,顶点为点E.

(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为   
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川绵阳12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.

(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案