12£®2016Äê11ÔÂ28ÈÕ£¬ÉñÖÝʮһºÅ·µ»Ø²Õ³É¹¦×Ž£®¼ÙÈç·µ»Ø²Õ׎ºóAµØΪһ¸öÖ±¾¶Îª2mµÄÔ²ÐΣ¬¹¤×÷ÈËÔ±Óþ¯½ä´øÔÚÆäÍâΧÖÁÉÙ1Ã×ÍâȦ³ÉÒ»¸öÃæ»ýΪ80m2µÄ³¤·½ÐΣ¬Æ丩ÊÓÈçͼ1Ëùʾ£®É賤·½Ðεij¤Îªym£¬¿íΪxm£®
£¨1£©ÇóyÓëxµÄº¯Êý¹Øϵʽ£»²¢ÔÚͼ2µÄƽÃæÖ±½Ç×ø±êϵÖл­³öÆ亯ÊýͼÏó£»
£¨2£©Èô¾¯½ä´ø³¤Ö»ÓÐ36m£¬ÇóÄÜΧ³É·ûºÏÒªÇóµÄ³¤·½ÐεĿíµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÃæ»ý¹«Ê½£¬¹¹½¨·´±ÈÀýº¯Êý¼´¿É£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{x+y=18}\\{y=\frac{80}{x}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=10}\\{y=8}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=10}\end{array}\right.$£¬½áºÏʵ¼ÊÎÊÌ⣬¿ÉÖª8¡Üx¡Ü4$\sqrt{5}$

½â´ð ½â£º£¨1£©ÓÉÌâÒâxy=80£¬
¡ày=$\frac{80}{x}$£¨x£¾0£©£¬
º¯ÊýͼÏóÈçͼËùʾ£¬


£¨2£©ÓÉ$\left\{\begin{array}{l}{x+y=18}\\{y=\frac{80}{x}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=10}\\{y=8}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=10}\end{array}\right.$£¬
µ±x=yʱ£¬x=y=$\sqrt{80}$=4$\sqrt{5}$
¡àÄÜΧ³É·ûºÏÒªÇóµÄ³¤·½ÐεĿíµÄÈ¡Öµ·¶Î§8¡Üx¡Ü4$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯ÊýµÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇÀí½â·´±ÈÀýº¯ÊýµÄ¶¨Ò壬Áé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬Õý·½ÐÎABCDÖÐÄÚ½ÓÕýÈý½ÇÐÎAEF£®ÇóÖ¤£ºS¡÷EFC=S¡÷ABE+S¡÷ADF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª£¬a=-32£¬b=-3-2£¬c=£¨-$\frac{1}{3}$£©-2£¬d=£¨-$\frac{1}{3}$£©0£¬Ôòa¡¢b¡¢c¡¢d µÄ´óС˳ÐòÊÇa£¼b£¼d£¼c£¨Óá°£¼¡±Á¬½Ó£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÎÒÊÐ2013Äêƽ¾ù·¿¼ÛΪÿƽ·½Ã×13000Ôª£¬Á¬ÐøÁ½ÄêÔö³¤ºó£¬2015Äêƽ¾ù·¿¼Û´ïµ½Ã¿Æ½·½Ã×15500Ôª£¬ÉèÕâÁ½Äêƽ¾ù·¿¼ÛÄêƽ¾ùÔö³¤ÂÊΪx£¬¸ù¾ÝÌâÒ⣬ÏÂÃæËùÁз½³ÌÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®15500£¨1+x£©2=13000B£®15500£¨1-x£©2=13000C£®13000£¨1+x£©2=15500D£®13000£¨1-x£©2=15500

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬¾ØÐÎACBDÖУ¬AB=5£¬BC=12£¬ABµÄÖд¹ÏßÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚF£¬ÔòBEµÄ³¤µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{12}{5}$B£®$\frac{13}{5}$C£®$\frac{169}{24}$D£®$\frac{60}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=BC£¬AB=2£¬µãOΪABµÄÖе㣬ÒÔµãOΪԲÐÄ×÷°ëÔ²Óë±ßACÏàÇÐÓÚµãD£®ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®1-$\frac{1}{4}$¦ÐB£®$\frac{1}{2}$-$\frac{¦Ð}{8}$C£®2-$\frac{3¦Ð}{4}$D£®2-$\frac{1}{4}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬MΪBCÉÏÒ»µã£¬ME¡ÍAM£¬ME½»ADµÄÑÓ³¤ÏßÓÚµãE£®ÈôAB=12£¬BM=5£¬ÔòDEµÄ³¤Îª£¨¡¡¡¡£©
A£®18B£®$\frac{109}{5}$C£®$\frac{96}{5}$D£®$\frac{25}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬¡ÏABC=¡ÏADC=90¡ã£¬EΪ¶Ô½ÇÏßACµÄÖе㣬Á¬½ÓBE£¬ED£¬BD£®Èô¡ÏBAD=58¡ã£¬Ôò¡ÏEBDµÄ¶ÈÊýΪ32¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬¡÷ABCÖУ¬EΪBC±ßµÄÖе㣬CD¡ÍAB£¬AB=2£¬AC=1£¬DE=$\frac{\sqrt{3}}{2}$£¬Ôò¡ÏCDE+¡ÏACD=£¨¡¡¡¡£©
A£®60¡ãB£®75¡ãC£®90¡ãD£®105¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸