【题目】已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
【答案】(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1,
(2)x<﹣2或0<x<1,
【解析】
试题分析:(1)利用已知求出反比例函数的解析式,再利用两函数交点求出一次函数解析式;
(2)利用函数图象求出使一次函数的值大于反比例函数的值的x的取值范围.
解:(1)据题意,反比例函数的图象经过点A(﹣2,1),
∴有m=xy=﹣2
∴反比例函数解析式为y=﹣,
又反比例函数的图象经过点B(1,n)
∴n=﹣2,
∴B(1,﹣2)
将A、B两点代入y=kx+b,有,
解得,
∴一次函数的解析式为y=﹣x﹣1,
(2)一次函数的值大于反比例函数的值时,
x取相同值,一次函数图象在反比例函数上方即一次函数大于反比例函数,
∴x<﹣2或0<x<1,
科目:初中数学 来源: 题型:
【题目】用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是( )
A.P为定值,I与R成反比例
B.P为定值,I2与R成反比例
C.P为定值,I与R成正比例
D.P为定值,I2与R成正比例
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发, 到收工时,行走记录为(单位:千米):
+8、-9、+4、+7、-2、-10、+18、-3、+7、+5
回答下列问题:
(1)收工时检修组在A地的哪边?距A地多少千米?
(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 相等的两个角是对顶角
B. 同位角相等
C. 图形平移后的大小可以发生改变
D. 两条直线相交所成的四个角都相等,则这两条直线互相垂直
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com