【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.
(1)图2中阴影部分的面积请用两种方法表示:① ;②_________.
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)观察图3,你能得到怎样的代数恒等式?
【答案】(1)① ②(2)(3)±5(4)
【解析】
(1)可直接用正方形的面积公式得到;(2)熟练掌握完全平方公式,并掌握和与差的区别;(3)利用第二问的等量关系解题计算;(4)参照图3按照长方形的面积公式和图中图形的面积和分别计算即可.
图中阴影部分为正方形,其边长为m-n
所以阴影部分面积可表示为:①
图中阴影部分为边长为m+n的大正方形面积减去四个小长方形面积,所以阴影部分面积还可表示为:
②
(2)由(1)的得等量关系式为:
(3)解:
(4) 图3可以看做是长为2m+n,宽为m+n的长方形,也可看做是两个边长为m的正方形和一个边长为n的正方形及三个长宽分别为m,n的长方形的面积和,所以,可得:
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:
(1)求抛物线的函数解析式并直接写出顶点M坐标;
(2)连接AM,N是AM的中点,连接BN,求线段BN长.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;
实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)
推理与计算:求点D到AC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | … | ||||||
… | … |
小聪观察上表,得出下面结论:①抛物线与轴的一个交点为;②函数的最大值为;③抛物线的对称轴是;④在对称轴左侧,随增大而增大.其中正确有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(-2,-2),则k的值为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(观察)
51×49=()2﹣()2
102×98=()2﹣()2
2001×1999=()2﹣()2
(发现)根据阅读回答问题
(1)请根据上面式子的规律填空:
998×1002= 2﹣ 2
(2)在上述乘法运算中,设第一个因数为m,第二个因数为n,请用有m、n的符号语言写出你所发现的规律,并证明.
(应用)请运用(发现)中总结的规律计算:59.8×60.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2﹣4x﹣6.
(1)求这个二次函数图象的顶点坐标及对称轴;
(2)指出该图象可以看作抛物线y=2x2通过怎样平移得到?
(3)在给定的坐标系内画出该函数的图象,并根据图象回答:当x取多少时,y随x增大而减小;当x取多少时,y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com