精英家教网 > 初中数学 > 题目详情
18.如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y=$\frac{4}{x}$(x>0)上,则S△OBP=4.

分析 过A作AF垂直于OB,过P作PG垂直于OB,由△AOB和△ACD均为等边三角形,利用等边三角形的性质得到一对同位角相等,利用同位角相等两直线平行得到AD与OB平行,利用平行线间的距离处处相等得到AF=PG,根据同底等高的三角形面积相等得到三角形OBP与三角形OBA面积相等,再利用反比例函数k的几何意义求出三角形BEO面积,即可确定出三角形OBP面积.

解答 解:过A作AF⊥OB,作P作PG⊥OB,
∵△OAB与△ADC都为等边三角形,
∴∠BOA=∠DAC=60°,
∴AD∥OB,
∴AF=PG(平行线间的距离处处相等),
∵OB为△OBA和△OBP的底,
∴$\frac{1}{2}$OB•AF=$\frac{1}{2}$OB•PG,即S△OBP=S△OAB(同底等高的三角形面积相等),
过B作BE⊥x轴,交x轴于点E,可得S△OBE=S△ABE=$\frac{1}{2}$S△OBA
∵顶点B在双曲线y=$\frac{4}{x}$(x>0)上,即k=4,
∴S△OBE=$\frac{|k|}{2}$=$\frac{4}{2}$=2,
则S△OBP=S△OBA=2S△OBE=4,
故答案为:4

点评 此题考查了反比例函数系数k的几何意义,以及等边三角形的性质,熟练掌握反比例函数k的几何意义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如果a-b=8,ab=20.则a2+b2=(  )
A.24B.104C.160D.64

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.
●探索发现  当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);
●延伸拓展  当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;
●应用推广  如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知一个多边形的内角和是外角和的3倍,那么这个多边形是八边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是(  )
A.CD=AC-BDB.CD=$\frac{1}{2}$AB-BDC.AC+BD=BC+CDD.CD=$\frac{1}{3}$AB

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=$\frac{k}{x}$在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4,则点C的坐标为(2,4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.图1为长方形纸片ABCD,AD=26,AB=22,直线L、M皆为长方形的对称轴.今将长方形纸片沿着L对折后,再沿着M对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形EFGHI,如图2.最后将图2的五边形展开后形成一个八边形,如图2,且八边形的每一边长恰好均相等.
(1)若图2中HI长度为x,请以x分别表示剪下的直角三角形的勾长和股长.
(2)请求出图3中八边形的一边长的数值,并写出完整的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.用直角边分别为6和8的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是36或32.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,Rt△ABO的顶点A是双曲线y=$\frac{k}{x}$与y=-x-(k+1)在第二象限的交点,AB⊥x轴于B且S△ABO=$\frac{3}{2}$.
(1)求这两个函数的关系式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.

查看答案和解析>>

同步练习册答案