已知:∠AOB=90。,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E。 (1)当三角板绕点C旋转到CD与OA垂直,CE与OB垂直时,(如图1) 此时由角平分线的性质可知CE=CD,又∵OM平分直角AOB,∴∠DOC=∠EOC=45。,∴△DCO与△ECO都为等腰直角三角形。∴OE=CE, OD=CD,又∵CE=CD,∴OE=OD=CD,请在此基础上继续证明:。 (2)当三角板绕点C旋转到CD与OA不垂直时(如图2),上述结论是否还成立?试说明理由。 (3)当三角板绕点C旋转到图3位置上时,上述结论还成立吗?若不成立,请写出线段OD, OE, OC之间的关系。 |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com