精英家教网 > 初中数学 > 题目详情
如图,△ABC是边长为2的等边三角形,BD=CD,∠BDC=120°,E、F飞别在AB、AC上,且∠EDF=60°.
(1)证明:BE+CF=EF;
(2)求△AEF的周长.
分析:(1)延长AB到N,使BN=CF,连接DN,求出∠FCD=∠EBD=∠NBD=90°,根据SAS证△NBD≌△FCD,推出DN=DF,∠NDB=∠FDC,求出∠EDF=∠EDN,根据SAS证△EDF≌△EDN,推出EF=EN,即可得出答案.
(2)由(1),易得△AEF的周长等于AB+AC.
解答:(1)证明:延长AB到N,使BN=CF,连接DN,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵BD=CD,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
∵在△NBD和△FCD中,
BD=DC 
∠NBD=∠FCD=90° 
BN=CF 

∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中,
DE=DE 
∠EDF=∠EDN 
DN=DF 

∴△EDN≌△EDF(SAS),
∴EF=EN=BE+BN=BE+CF,
即BE+CF=EF.

(2)解:∵△ABC是边长为2的等边三角形,
∴AB=AC=2,
∵BE+CF=EF,
∴△AEF的周长为:AE+EF+AF=AE+EB+FC+AF=AB+AC=4.
点评:本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为a的等边三角形,O为△ABC的中心.将△ABC绕着中心O旋转120°.
①直接写出△ABC的内切圆半径r和外接圆半径R分别是多少?
②设点D、E、F分别在边AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,试画出△DEF,说明它的形状,并计算它的周长;
③根据“线动成面”的道理,△ABC的三条边AB、BC和CA在旋转过程中扫过的部分组成的平面图形的形状是什么?并计算出此图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)如图,△ABC是边长为4的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连结BD,交AC于F.
(1)猜想BD与DE的位置关系,并证明你的结论;
(2)求△BDE的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为
6
6

查看答案和解析>>

同步练习册答案