精英家教网 > 初中数学 > 题目详情
如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3).
(1)求抛物线的对称轴及k的值;
(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)设点M是抛物线上的一动点,且在第三象限.当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标.
分析:(1)由抛物线的解析式即可得出其对称轴方程,再把点C(0,-3)代入抛物线的解析式即可求出k的值;
(2)由两点之间线段最短可知当P点在线段AC上就可使PA+PC的值最小,再由P点要在对称轴上,可知P点应为线段AC与对称轴直线x=-1的交点,由(1)中求出的C点坐标即可得出抛物线的表达式,故可求出A、B两点的坐标,利用待定系数法即可求出直线AC的解析式,把x=-1代入即可求出P点坐标;
(3)由于线段AB为定值,所以当B点在抛物线的顶点上△ABM的面积最大,由A、B、M三点的坐标即可得出AB及BD的长,再由三角形的面积公式即可得出结论.
解答:解:(1)∵抛物线的解析式为:y=(x+1)2+k,
∴其对称轴为:直线x=-1.
∵抛物线y=(x+1)2+k过点C(0,-3),
∴-3=(0+1)2+k,解得k=-4;

(2)如图,∵两点之间线段最短,
∴当P点在线段AC上就可使PA+PC的值最小.
又∵P点要在对称轴上,
∴P点应为线段AC与对称轴直线x=-1的交点,
由(1)可知,抛物线的表达式为:y=(x+1)2-4=x2+2x-3.
令y=0,则x2+2x-3=0.
解得:x1=-3,x2=1.
∴点A、B的坐标分别是A(-3,0)、B(1,0),
设直线AC的表达式为y=kx+b,则
-3k+b=0
b=-3.

解得 
k=-1
b=-3.

∴直线AC的表达式为y=-x-3,
当x=-1时,y=-(-1)-3=-2.
∴此时点P的坐标为(-1,-2);

(3)依题意得:当点M运动到抛物线的顶点时,△AMB的面积最大.
∵抛物线表达式为y=(x+1)2-4,
∴抛物线的顶点坐标为(-1,-4),即MD=4,
∴点M的坐标为(-1,-4),
∴△AMB的最大面积S△AMB=
1
2
AB•MD=
1
2
×(3+1)×4=8.
点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式,三角形的面积公式等相关知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案