精英家教网 > 初中数学 > 题目详情

【题目】两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度,线段CE旋转过程中扫过的面积为

【答案】30;
【解析】解:∵三角板是两块大小一样斜边为4且含有30°的角, ∴CE′是△ACB的中线,
∴CE′=BC=BE′=2,
∴△E′CB是等边三角形,
∴∠BCE′=60°,
∴∠ACE′=90°﹣60°=30°,
∴线段CE旋转过程中扫过的面积为: =
所以答案是:30,
【考点精析】本题主要考查了扇形面积计算公式和旋转的性质的相关知识点,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC

(1)请直接写出AB、BC、AC的长度;

(2)若点DA点出发,以每秒1个单位长度的速度向左运动,点EB点出发以每秒2个单位长度的速度向右运动,点FC点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.

(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=BC,ABC≌△A1BC1,A1BAC于点E,A1C1分别交AC、BCD、F两点,观察并猜想线EA1FC有怎样的数量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强居民节约用水意识,某市在2018年开始对供水范围内的居民用水实行“阶梯收费”,具体收费标准如下表:

某户居民四月份用水10 m3时,缴纳水费23元.

(1) a的值;

(2) 若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,ODOB的反向延长线.若OC是∠AOD的平分线,则∠BOC=_____°,射线OC的方向是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC、BD相交于点O,若AE平分∠BAD交BC于点E,且BO=BE,连接OE,则∠BOE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60°,P是弧 上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴为直线x=1,AB=4.
(1)求抛物线的表达式;
(2)抛物线上有两点M(x1 , y1)和N(x2 , y2),若x1<1,x2>1,x1+x2>2,试判断y1与y2的大小,并说明理由;
(3)直线l过A及C(0,﹣2),P为抛物线上一点(在x轴上方),过P作PD∥y轴交直线AC于点D,以PD为直径作⊙E,求⊙E在直线AC上截得的线段的最大长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.

(1)当t=   s时,以OB、OP为邻边的平行四边形是菱形;

(2)当点P在OB的垂直平分线上时,求t的值;

(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.

查看答案和解析>>

同步练习册答案