精英家教网 > 初中数学 > 题目详情
11.有理数a、b、c在数轴上的位置如图所示,化简|a-b|+|c-a|-|b-c|的结果是(  )
A.-2aB.-2bC.-2a-2bD.2a-2b

分析 根据数轴比较a-b、c-a、b-c与0的大小关系,然后根据绝对值的性质化简.

解答 解:由数轴可知:c<b<0<a,
∴a-b>0,c-a<0,b-c>0,
∴原式=(a-b)-(c-a)-(b-c)
=a-b-c+a-b+c
=2a-2b
故选(D)

点评 本题考查整式的加减运算,涉及数轴比较数的大小,绝对值的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②3a+c<0,③a-b+c>0,④4a+2b+c>0,⑤若点(-2,y1)和(-$\frac{1}{3}$,y2)在该图象上,则y1>y2,其中正确的结论是②④.(填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系内,已知点A(2,2),B(-6,-4),C(2,-4).
(1)求△ABC的外接圆的圆心点M的坐标;
(2)求△ABC的外接圆在x轴上所截弦DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知AB和CD是⊙O的两条直径,CE∥AB,若$\widehat{CE}$的度数为40°,则$\widehat{AE}$的度数为70°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在矩形ABCD中,AB=$\sqrt{3}$AD,点P在线段AB上,满足PB=PD,点M在射线CD上,点C关于直线BM的对称点为点C′,连接C′B、C′M,射线MC′与射线DP交于点N.
(1)求证:∠PDC=60°;
(2)求证:当M在线段CD上时,∠MBN=60°;
(3)已知AB=9,请直接写出当点M在CD边的延长线上时,线段NC′与NP的数量关系:NP-NC'=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,点G是△ABC的重心,连结AG,BG,CG,并延长AG交BC于点D,若AG=13,BG=12,CG=5,则BD的长为6.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,二次函数y=ax2+bx-2的图象经过点A(1,0)、点B(4,0),且与y轴交于点C.
(1)求二次函数解析式;
(2)若点D在y轴上,以D、A、C为顶点的三角形与△ABC相似,求点D的坐标;
(3)若点E位于x轴上方的抛物线上,且∠EBC=∠OAC,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元,若该商场同时购进甲、乙两种商品共100件恰好用去2700元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)求能购进甲、乙两种商品各多少件?
(2)设甲商品购进x件,售完此两种商品总利润为y元,写出y与x的函数关系式;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.按此优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=$\frac{3}{4}$.点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=$\frac{{{S_{△ECF}}}}{{{S_{△BCD}}}}$.

(1)求BD的长;
(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;
(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案