精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-个单位长度,试探索问题(2).

【答案】分析:平移的实质可以可作顶点的平移,先将已知抛物线y=x2-4x+1写成顶点式,再按平移规律写出平移后的函数顶点式.
解答:解:(1)y=x2-4x+1
配方,得y=(x-2)2-3,
向左平移4个单位,得y=(x+2)2-3
∴平移后得抛物线的解析式为y=x2+4x+1;

(2)由(1)知,两抛物线的顶点坐标为(2,-3),(-2,-3)


∴两抛物线的交点为(0,1)
由图象知,若直线y=m与两条抛物线有且只有四个交点时,
m>-3且m≠1;

(3)由y=ax2+bx+c配方得y=a(x+2+
向左平移个单位长度得到抛物线的解析式为y=a(x-2+
∴两抛物线的顶点坐标分别为

得,
∴两抛物线的交点为(0,c)
由图象知满足(2)中条件的m的取值范围是:
m>且m≠c.
点评:此题主要考查抛物线的平移,直线与抛物线的交点等相关知识;此题综合性强,难度较大,要求学生有较好的运算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案