精英家教网 > 初中数学 > 题目详情

【题目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如图.当COD在∠AOB的内部时

AOC=39°40′,求DOE的度数;

AOC=α,求DOE的度数(用含α的代数式表示),

(2)如图,当COD在AOB的外部时,

请直接写出AOC与DOE的度数之间的关系;

AOC内部有一条射线OF,满足∠AOC+2∠BOE=4∠AOF,写出AOF与DOE的度数之间的关系.

【答案】(1)①19°50′;②∠DOE=;(2)①∠AOC=2∠DOE;②∠DOE=∠AOF+30°.

【解析】

(1)①②根据角平分线的定义和角的和差即可得到结论;

②根据角平分线的定义和角的和差即可得到结论

(2)①根据已知条件得到∠AOC=120°+BOC,DOE=60°+COE,根据角平分线的定义得到∠COE=BOC,等量代换即可得到结论;

②如图,由①知,∠AOC=2DOE,根据∠AOC+2BOE=4AOF,化简即可得到结论.

(1)①∵∠AOB=120°,COD=60°,AOC=39°40′,

∴∠BOC=AOB﹣AOC=120°﹣39°40′=80°20′,

OE平分∠BOC,

∴∠COE=BOC=40°10′,

∴∠DOE=COD﹣COE=19°50′;

②∵∠AOB=120°,COD=60°,AOC=α,

∴∠BOC=AOB﹣AOC=120°﹣α,

OE平分∠BOC,

∴∠COE=BOC=60°﹣α,

∴∠DOE=

(2)①∵∠AOC=120°+BOC,DOE=60°+COE,

OE平分∠BOC,

∴∠COE=BOC,

∴∠AOC=2DOE;

②如图,

由①知,∠AOC=2DOE,

∵∠AOC+2BOE=4AOF,

∴∠AOC+BOC=AOC+AOC﹣120°=2AOC﹣120°=4DOE﹣120°=4AOF,

∴∠DOE=AOF+30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知a,b,c在数轴上对应点的位置如图所示,

(1)在数轴上标出a,b,c相反数的对应点的位置;

(2)判断下列各式与0的大小:①b+c 0;②a-b 0;③bc 0;④ 0.

(3)化简式子:| a | - | a+b | + | c-b | + | a+c | .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与x轴交于A(6,0)、B(﹣ ,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.
(1)求此抛物线的解析式;
(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.
①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是(  )

A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲的速度都大于乙的速度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2
⑤当△ABP≌△ADN时,BP=4 ﹣4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线交于点O,AB∥CD,O是BD的中点.

(1)求证:△ABO≌△CDO;

(2)若BC=AC=4,BD=6,求△BOC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为和谐数如(8=321216=5232,即816均为和谐数),在不超过2017的正整数中,所有的和谐数之和为(  )

A. 255054 B. 255064 C. 250554 D. 255024

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( ﹣1)0 ×sin60°+(﹣2)2

查看答案和解析>>

同步练习册答案