精英家教网 > 初中数学 > 题目详情
12.如图,以直角三角形的三边为边向外作正方形,他们的面积依次为225,289,A,则A的值为(  )
A.4B.8C.16D.64

分析 直接根据勾股定理求解即可.

解答 解:∵以直角三角形的三边为边向外作正方形,他们的面积依次为225,289,A,
∴A=289-225=64.
故选D.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=-$\frac{1}{2}$x2+bx+c与x轴交于A,B两点,A点位于y轴左侧,B点位于A点右侧,且OA=2,与y轴相交于点C,OC=4,点P为抛物线上的任意一点,且在线段BC的上方.
(1)求抛物线的解析式,并画出图形;
(2)试求当P点运动到什么位置时,△PBC的面积最大并求其最大值;
(3)在抛物线的对称轴上是否存在点Q,使得AQ=CQ?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.完成下面的证明:
如图,已知∠BAG与∠AGD互补,且∠1=∠2,求证:∠E=∠F.
证明:∵∠BAG与∠AGD互补(已知).
∴AB∥CD(同旁内角互补两直线平行)
∴∠BAG=∠AGC(两直线平行,内错角相等)
又∵∠1=∠2(已知)
∴∠BAG-∠1=∠AGC-∠2(等式的性质)
即∠3=∠4
∴AE∥FG(内错角相等,两直线平行)
∴∠E=∠F(两直线平行,内错角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若把分式$\frac{x+y}{3x}$中的x和y都扩大2倍,那么分式的值(  )
A.扩大2倍B.不变C.缩小2倍D.缩小3倍

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列运算正确的是(  )
A.a3+a4=a7B.2a3•a4=2a7C.(2a)3=6a3D.a8÷a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)($\sqrt{2}$+1)2015($\sqrt{2}$-1)2014
(2)$\frac{2}{\sqrt{5}+\sqrt{3}}$-$\sqrt{(1-\sqrt{5})^{2}}$+$\frac{1}{6}$$\sqrt{108}$÷$\frac{1}{2}$$\sqrt{\frac{1}{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
摸球的次数s15030060090012001500
摸到白球的频数n63a247365484606
摸到白球的频率$\frac{n}{s}$0.4200.4100.4120.4060.403b
(1)按表格数据格式,表中的a=123;b=0.404;
(2)请估计:当次数s很大时,摸到白球的频率将会接近0.4(精确到0.1);
(3)请推算:摸到红球的概率是0.6(精确到0.1);
(4)试估算:这一个不透明的口袋中红球有15只.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.给出下列命题:
①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;
②△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
③三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠C为直角的直角三角形;
④△ABC中,若 a:b:c=1:2:$\sqrt{3}$,则这个三角形是直角三角形.
其中,正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,A,B,C三点的坐标分别为(-6,7)、(-3,0)、(0,3).
(1)画出△ABC,并求△ABC的面积;
(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;
(3)P(-3,m)为△ABC中一点,将点P向右平移4个单位后,再向上平移6个单位得到点Q(n,-3),则m=-9,n=1.

查看答案和解析>>

同步练习册答案