精英家教网 > 初中数学 > 题目详情
4.(1)计算:$\sqrt{\frac{4}{9}}$-$\sqrt{(-2)^{4}}$+$\root{3}{\frac{19}{27}-1}$-(-1)2017    
(2)求满足条件的x值:(x-1)2=9.

分析 (1)原式利用平方根、立方根定义,以及乘方的意义计算即可得到结果;
(2)方程利用平方根定义开方即可求出x的值.

解答 解:(1)原式=$\frac{2}{3}$-4-$\frac{2}{3}$+1=-3;
(2)开方得:x-1=3或x-1=-3,
解得:x=4或x=-2.

点评 此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.从泰州到某市,可乘坐普通列车或动车,已知动车的行驶路程是400千米,普通列车的行驶路程是动车的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若动车的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐动车所需时间比乘坐普通列车所需时间缩短3小时,求动车的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE
(1)填空:①∠AEB的度数为60°;②线段BE、AD之间的数量关系是AD=BE.
(2)拓展探究:如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若(x2+px+q)(x-2)展开后不含x的一次项,则p与q的关系是(  )
A.p=2qB.q=2pC.p+2q=0D.q+2p=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知AB∥CD,∠E=∠F,试说明∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,建立如图所示的平面直角坐标系,已知点A(1,0),B(4,0),C(3,3),D(1,4)
(1)描出A、B、C、D、四点的位置,并顺次连接ABCD,
(2)四边形ABCD的面积是8.5.
(3)把四边形ABCD向左平移5个单位,再向下平移2个单位得到四边形A'B'C'D',写出点A'、B'、C'、D'的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)解分式方程:$\frac{5}{x-2}$=$\frac{3}{x}$
(2)小玲在解决“先化简,再求值:($\frac{x-2}{x+2}$+$\frac{4x}{{x}^{2}-4}$)÷$\frac{1}{{x}^{2}-4}$,其中,x=-3”这个问题时,把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.观察下面一列有规律的数:$\frac{1}{2}$,-$\frac{1}{5}$,$\frac{1}{10}$,-$\frac{1}{17}$,$\frac{1}{26}$,-$\frac{1}{37}$.,$\frac{1}{50}$,…,根据规律可知,第10个数是-$\frac{1}{101}$,第n个数是(-1)n+1×$\frac{1}{{n}^{2}+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.因式分解
(1)a3-4a
(2)4m(a+b)-2n(a+b)

查看答案和解析>>

同步练习册答案