精英家教网 > 初中数学 > 题目详情

【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

【答案】
(1)证明:∵E是AC中点,

∴EC= AC.

∵DB= AC,

∴DB=EC.

又∵DB∥EC,

∴四边形DBCE是平行四边形.

∴BC=DE


(2)添加AB=BC.

理由:∵DB AE,

∴四边形DBEA是平行四边形.

∵BC=DE,AB=BC,

∴AB=DE.

ADBE是矩形


【解析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
【考点精析】本题主要考查了平行四边形的判定与性质和矩形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.

(1)①求证:△ABD∽△ACE;
②若CD=1,BD= ,求AD的长.
(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设 = =k,若CD=1,BD=2,AD=3,求k的值.

(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若 = = ,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
(1)问实际每年绿化面积多少万平方米?
(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.

身高分组

频数

频率

152≤x<155

3

0.06

155≤x<158

7

0.14

158≤x<161

m

0.28

161≤x<164

13

n

164≤x<167

9

0.18

167≤x<170

3

0.06

170≤x<173

1

0.02


根据以上统计图表完成下列问题:
(1)统计表中m= , n= , 并将频数分布直方图补充完整
(2)在这次测量中两班男生身高的中位数在:范围内;
(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①SABF=SADF;②SCDF=4SCEF;③SADF=2SCEF;④SADF=2SCDF , 其中正确的是(
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证: =
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.

类别

频数(人数)

频率

小说

0.5

戏剧

4

散文

10

0.25

其他

6

合计

1


根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx+b与坐标轴分别交于点A(0,8)、B(8,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒1个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒.

(1)直接写出直线的解析式:
(2)若E点的坐标为(﹣2,0),当△OCE的面积为5 时.
①求t的值;
②探索:在y轴上是否存在点P,使△PCD的面积等于△CED的面积?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案