精英家教网 > 初中数学 > 题目详情

如图,二次函数的图象与一次函数的图象交于两点. C为二次函数图象的顶点.

(1)求二次函数的解析式;
(2)定义函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1≠y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1(或y2).” 当直线(k >0)与函数f的图象只有两个交点时,求的值.

(1)y=x2-2x+1;(2)k=1,

解析试题分析:(1)根据题意设抛物线的解析式为y=a(x-1)2,把A(0,1)代入求出a的值即可.
(2)根据题意可知直线(k >0)与函数f的图象只有两个交点共有三种情况:①直线与直线AB:y=x+1平行,②直线过点B(3,4),③直线与二次函数y=x2-2x+1的图象只有一个交点,分别求出k的值即可.
试题解析:(1)设抛物线解析式为y=a(x-1)2,,
由抛物线过点A(0,1),可得y=x2-2x+1
(2)可得B(3,4)
直线(k >0)与函数f的图象只有两个交点共有三种情况:
①直线与直线AB:y=x+1平行,此时k=1;
②直线过点B(3,4),此时
③直线与二次函数y=x2-2x+1的图象只有一个交点,
此时有  得,
由△=0可得.
综上:k=1,
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.
(1)直接写出y与x之间的函数关系式y=                      
(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点)。已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?S最大值是多少?

查看答案和解析>>

同步练习册答案