精英家教网 > 初中数学 > 题目详情
(2004•连云港)某小区响应市政府号召,开展节约用水活动,效果显著.为了解某居民小区节约用水情况,随机对该小区居民户家庭用水情况作抽样调查,3月份较2月份的节水情况如表所示(在每组的取值范围中,含最低值,不含最高值):
节水量(吨) 0.2~0.6 0.6~1.0 1.0~1.4 1.4~1.8 1.8~2.2
户数 5 20 35 30 10
(1)试估计该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分比;
(2)已知该小区共有居民5000户,若把每组中各个节水量值用该组的中间值(如0.2~0.6的中间值为0.4)来代替,请你估计该小区3月份较2月份共节水多少吨?
【答案】分析:(1)由题意可知:节水在1.0-1.4吨的用户为35户,节水在1.4-1.8吨的用户为30户,节水在1.8-2.2吨的用户为10户,则该小区3月份较2月份节水量不低于1吨的户数为30+35+10=75户,又样本总量为5+20+75=100(户),故该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分为=75%;
(2)由题意可知:节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),则每户的平均节水量为128÷100=1.28吨,则5000户共节水5000×1.28=6400吨.
解答:解:(1)3月份较2月份节水量不低于1吨的用户数为35+30+10=75,
又样本总量为5+20+75=100(户),故所求的百分比为=75%.
答:3月份较2月份节水量不低于1吨的户数占小区总户数的百分比为75%;

(2)节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),
所以全小区居民户的总节水量约为=6400(吨).
答:该小区居民户3月份较2月份共节水约6400吨.
点评:本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2004•连云港)有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.
(1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:解答题

(2004•连云港)如图,直线y=kx+4与函数y=(x>0,m>0)的图象交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若△COD的面积是△AOB的面积的倍,求k与m之间的函数关系式;
(2)在(1)的条件下,是否存在k和m,使得以AB为直径的圆经过点P(2,0)?若存在,求出k和m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省连云港市中考数学试卷(解析版) 题型:解答题

(2004•连云港)如图,直线y=kx+4与函数y=(x>0,m>0)的图象交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若△COD的面积是△AOB的面积的倍,求k与m之间的函数关系式;
(2)在(1)的条件下,是否存在k和m,使得以AB为直径的圆经过点P(2,0)?若存在,求出k和m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省连云港市中考数学试卷(解析版) 题型:解答题

(2004•连云港)有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.
(1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《代数式》(01)(解析版) 题型:选择题

(2004•连云港)某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为( )
A.a元
B.0.8a元
C.1.04a元
D.0.92a元

查看答案和解析>>

同步练习册答案