精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系中有两点A(1,3),B(-3,6),则线段AB的长为(  )
分析:利用勾股定理列式计算即可得解.
解答:解:∵点A(1,3),B(-3,6),
∴AB=
(-3-1)2+(6-3)2
=5.
故选C.
点评:本题考查了坐标与图形性质,勾股定理,是基础题,熟记坐标平面内的两点间的距离的求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平面直角坐标系中,点A,点B的坐标分别为A(0,0),B(0,4),点C在x轴上,且△ABC的面积为6,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知在平面直角坐标系xOy中,⊙O的半径为1.
(1)当直线l:y=x+b与⊙O只有一个交点时,求b的值;
(2)当反比例函数y=
kx
的图象与⊙O有四个交点时,求k的取值范围;
(3)试探究当n取不同的数值时,二次函数y=x2+n的图象与⊙O交点个数情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的精英家教网直线交线段AB于点C,过点C作OC的垂线与直线x=1相交于点P,设AC=t,点P的坐标为(1,y),
(1)求点C的坐标(用含t的代数式表示);
(2)求y与t之间的函数关系式和t的取值范围;
(3)当△PBC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.

查看答案和解析>>

同步练习册答案