A. | (2,2) | B. | (1,2) | C. | ($\sqrt{2}$,2$\sqrt{2}$) | D. | (2,1) |
分析 首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky),进而求出即可.
解答 解:∵∠OAB=∠OCD=90°,CO=CD,Rt△OAB与Rt△OCD是位似图形,点B的坐标为(2,0),
∴BO=2,则AO=AB=$\sqrt{2}$,
∴A(1,1),
∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,
∴点C的坐标为:(2,2).
故选:A.
点评 此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.
科目:初中数学 来源: 题型:解答题
总收入(单位:万元) | 总支出(单位:万元) | 利润(单位:万元) | |
去年 | x | y | 200 |
今年 | 1.2x | 0.9y | 780 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5个 | B. | 6个 | C. | 7个 | D. | 8个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第7天 | B. | 第8天 | C. | 第9天 | D. | 第10天 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com