【题目】若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。
【答案】(1)本题为开放题,答案不唯一,符合题意即可,如:;
(2),当时,的最大值为20.
【解析】
试题(1)、只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)、由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,再利用二次函数的性质就可以解决问题.
试题解析:(1)、设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k, 当a=2,h=3,k=4时,
二次函数的关系式为y=2(x﹣3)2+4. ∵2>0, ∴该二次函数图象的开口向上.
当a=3,h=3,k=4时, 二次函数的关系式为y=3(x﹣3)2+4. ∵3>0,∴该二次函数图象的开口向上.
∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,
∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.
∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.
(2)、∵y1的图象经过点A(1,1), ∴2×12﹣4×m×1+2m2+1=1. 整理得:m2﹣2m+1=0. 解得:m1=m2=1.
∴y1=2x2﹣4x+3=2(x﹣1)2+1, ∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),
∵y1+y2与y1为“同簇二次函数”, ∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4, ∴函数y2的表达式为:y2=x2﹣2x+1.
∴y2=x2﹣2x+1=(x﹣1)2, ∴函数y2的图象的对称轴为x=1. ∵1>0,
∴函数y2的图象开口向上. 当0≤x≤3时,∵函数y2的图象开口向上, ∴y2的取值范围为0≤y2≤4.
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的矩形ABCD中,E为AB的中点,有一圆过C、D、E三点,且此圆分别与AD、BC相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:
(甲) 作∠DEC的角平分线L,作DE的中垂线,交L于O点,则O即为所求;
(乙) 连接PC、QD,两线段交于一点O,则O即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确 B. 两人皆错误
C. 甲正确,乙错误 D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣=0(a>0)只有一个整数解,则a的值等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.
(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为_________,抛物线的解析式为_________;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,ABAD=BCAE.
(1)求证:∠BAC=∠AED;
(2)在边AC取一点F,如果∠AFE=∠D,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com