解:(1)由题意可知:y=(x-2)(x-2m+3),
因此抛物线与x轴的两个交点坐标为:
(2,0)(2m-3,0),
因此无论m取何值,抛物线总与x轴交于(2,0)点;
(2)令y=0,有:x
2-(2m-1)x+4m-6=0,则:
x
1+x
2=2m-1,x
1x
2=4m-6;
∵AB<6
∴x
2-x
1<6,
即(x
2-x
1)
2<36,(x
1+x
2)
2-4x
1x
2<36,
即(2m-1)
2-4(4m-6)<36,
解得-
<x<
.①
根据A、B分别在原点两侧可知:x
1x
2<0,
即4m-6<0,m<
.②
综合①②可得-
<m<
;
(3)假设存在这样的m,设圆M与y轴的切点为D,过M作x轴的垂线设垂足为E.
①当C点在x正半轴时,x=
>0,
因此
<m<
,
∵弧BC=弧CD,
因此BC=CD.
OC=
,CD=BC=OB-OC=2-
=
,EC=
BC=
,
OE=MD=OC+CE=
+
=
.
易知:OD=ME,即OD
2=ME
2∴CD
2-OC
2=CM
2-CE
2,
(
)
2-(
)
2=(
)
2-(
)
2;
解得m=
,符合m的取值范围.
②当C点在x负半轴时,x=
<0,
因此-
<m<
,
同①可求得OC=
,CD=AC=
,CE=
,MD=OE=
.
同理有:CD
2-OC
2=MC
2-CE
2(
)
2-(
)
2=(
)
2-(
)
2化简得:m
2=
,
∴m=±
,均不符合m的取值范围,
因此这种情况不成立.
综上所述,存在符合条件的m,且m=
.
分析:(1)将抛物线的解析式化为交点式,可求得抛物线与x轴的交点其中一个是定值,不随m的变化而变化;
(2)本题可从两个方面考虑:①AB的距离小于6,可用韦达定理求出一个m的取值范围,
②由于A、B分别在原点两侧,因此根据韦达定理有x
1x
2<0,据此可求出另外一个m的取值范围.综合两种情况即可得出所求的m的取值范围;
(3)本题要先画出图形,分抛物线对称轴在y轴左侧和右侧两种情况进行求解.解题思路一致.假设圆M与y轴的切点为D,过M作x轴的垂线设垂足为E,都是通过在直角三角形ACD和MEB(或MEA)中分别表示出OD和ME的长,根据OD=ME来列等量关系求出t的值.
点评:本题结合圆和一元二次方程的相关知识考查了二次函数的综合应用,难度较大.