精英家教网 > 初中数学 > 题目详情
20.成成在满分为100分的期中、期末数学测试中,两次的平均分为90分,若按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,则成成的学期数学成绩可能是(  )
A.85B.88C.95D.100

分析 设期中的成绩是x分,期末的成绩是y分,设学期成绩是z,根据平均数公式和权平均数公式列出式子,然后对每个答案进行判断即可.

解答 解:设期中的成绩是x分,期末的成绩是y分,
则$\frac{x+y}{2}$=90,即x+y=180,
则3x+3y=540…①;
若学期成绩是z,则30%x+70%y=z,即3x+7y=10z…②,
②-①得4y=10z-540,
则y=$\frac{10z-540}{4}$,
当z=85时,y=77.5,则x=180-72.5=102.5>100(分),不满足条件,则A错误;
当z=88时,y=85,则x=180-85=95(分),满足条件,则B正确;
当z=95时,y=102.5>0,则不满足条件,故C错误;
当=z=100时,y=115>0,不满足条件,故D错误.
故选B.

点评 本题考查了加权平均数公式,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.对于一组不同权重的数据,加权平均数更能反映数据的真实信息,理解公式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)
(1)求此抛物线的解析式.
(2)求点B到直线AC的距离.
(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在矩形ABCD中,BC=2,M为对角线BD的中点,连接CM,以CM为直径作⊙O交BD于点E,连接AE,当直线AE与⊙O相切时,AB的长为$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.将一矩形纸片按图1-图4方式折叠:
第一步,在矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;
第二步:如图2,把这个正方形折成两个相等的矩形,再把纸片展平;
第三步:折出内侧矩形的对角线AB,并将AB折到图3中所示的AD处;
第四步:展平纸片,按照所得的点D折出DE.
我们称宽与长的比是$\frac{\sqrt{5}-1}{2}$(约为0.618)的矩形为黄金矩形.
(1)若MN=4cm
①图3中AB=2$\sqrt{5}$cm;
②图4中的黄金矩形为BCDE;
(2)设AB=a,AQ+BD=b,AQ•BD=c,请用一个等式表示a、b、c之间的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.探索与发现:
(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是a1⊥a3,请说明理由.
(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是a1∥a4(直接填结论,不需要说明理由)
(3)现在有2014条直线a1,a2,a3,…,a2014,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2014的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AB是半圆⊙O的直径,点C是半圆上一个动点(不与点A,B重合),点D是弧AC的中点,延长CD交经过点A的切线于点E,连接AD,当△ADE是等腰三角形时,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.分解因式:
(1)$\frac{1}{4}$x+xy+xy2
(2)(m+n)3-4(m+n)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在等腰△ABC中,AB=AC,cos∠ABC$\frac{4}{5}$,点P是直线BC上一点,且PC PB=1:3,则tan∠APB=$\frac{3}{2}$或$\frac{3}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.将多项式ax2-4ax+4a分解因式为a(x-2)2

查看答案和解析>>

同步练习册答案