精英家教网 > 初中数学 > 题目详情
(2013•顺义区二模)已知抛物线y=3x2+mx-2
(1)求证:无论m为任何实数,抛物线与x轴总有两个交点.
(2)若m为整数,当关于x的方程3x2+mx-2=0的两个有理根在-1与
4
3
之间(不包括-1、
4
3
)时,求m的值.
(3)在(2)的条件下.将抛物线y=3x2+mx-2在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象G,再将图象G向上平移n个单位,若图象G与过点(0,3)且与x轴平行的直线有4个交点,直接写出n的取值范围
11
12
<n<3
11
12
<n<3
分析:(1)利用根的判别式大于0证明即可;
(2)用含有m的代数式表示方程的两个根,然后列出不等式组,求解得到m的取值范围,再根据方程的根是有理根求出m的值即可;
(3)求出抛物线顶点翻折后的对应点的坐标,然后根据有4个交点确定出平移距离,从而得解.
解答:(1)证明:△=b2-4ac=m2-4×3×(-2)=m2+24,
∵m2≥0,
∴m2+24≥24,
∴无论m为任何实数,方程3x2+mx-2=0总有两个不相等的实数根,
∴无论m为任何实数,抛物线与x轴总有两个交点;

(2)解:方程3x2+mx-2=0中,a=3,b=-m,c=-2,
x=
-b±
b2-4ac
2a
=
-m±
m2+24
6

∵两个有理根在-1与
4
3
之间,
-m-
m2+24
6
>-1①
-m+
m2+24
6
4
3

由不等式①得,m+
m2+24
<6,
m2+24
<6-m,
两边平方得,m2+24<36-12m+m2
解得m<1,
由不等式②得,-m+
m2+24
<8,
m2+24
<8+m,
两边平方得,m2+24<64+16m+m2
解得m>-
5
2

∴不等式组的解集是-
5
2
<m<,
∵m为整数,
∴m=-2、-1、0,
又∵方程的根是有理数根,
∵m2+24是完全平方式,
∴m=-1;

(3)解:m=-1时,抛物线为y=3x2-x-2,
∵-
b
2a
=-
-1
2×3
=
1
6

4ac-b2
4a
=
4×3×(-2)-(-1)2
4×3
=-
25
12

∴原抛物线的顶点坐标为(
1
6
,-
25
12
),
沿x轴翻折后顶点的对应点的坐标为(
1
6
25
12
),
∵3-
25
12
=
11
12
,3-0=3,
11
12
<n<3.
故答案为:
11
12
<n<3.
点评:本题是二次函数综合题型,主要利用了根的判别式与根的情况,不等式的求解,平移变换,(2)难点在于整理为关于m的一元一次不等式,(3)关键在于求出原抛物线的顶点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•顺义区二模)把代数式ab2-6ab+9a分解因式,下列结果中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)函数y=kx-k与y=
k
x
(k≠0)
在同一坐标系中的图象可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)若|a-2|=2-a,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)函数y=
2-xx-3
中,自变量x的取值范围是
x≠3
x≠3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)若把代数式x2+5x+7化为(x-m)2+k的形式,其中m,k为常数,则k-m=
13
4
13
4

查看答案和解析>>

同步练习册答案