精英家教网 > 初中数学 > 题目详情
16.(1)如图,长3m的梯子斜靠着墙,梯子底端离墙底0.6m,问梯子顶端离地面多少米?(精确到0.1m)
(2)题(1)中,若梯子的顶端自墙面下滑了0.9m,那么梯子的底端沿地面向外滑动的距离是否也为0.9m?说明理由.

分析 (1)将梯子靠在墙上,就会构成一个直角三角形,然后利用勾股定理解答.
(2)首先表示出梯子下滑后梯子顶端距地面的距离,然后计算出梯子底端与墙距离,再减去0.6可得答案.

解答 解:(1)解:有梯子长为13米,梯子底端距墙底为5米,由所在直角三角形另一边AC=$\sqrt{{3}^{2}-0.{6}^{2}}$≈2.9米.

(2)梯子下滑后梯子顶端距地面为2.9-0.9=2米,由所在直角三角形中梯子底端与墙距离为$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$米,
所以梯子的底端在水平方向上滑动为$\sqrt{5}$-0.6≠0.9.
答:梯子的底端在水平方向向外滑动的距离不是0.9m.

点评 此题主要考查了勾股定理在实际生活中的应用,解题的关键是从实际问题中整理出直角三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为(  )
A.12B.24C.16D.32

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在$\frac{1}{x}$,$\frac{1}{2}$,$\frac{{x}^{2}+1}{2}$,$\frac{3}{x+y}$,$\frac{abc}{m}$中,分式的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.$\frac{14}{3}$是(  )
A.整数B.无理数C.有理数D.自然数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,动点P从A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度匀速,过点P作PD∥BC,交AB于点D,连结PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0)
(1)直接用含t的代数式分别表示:QB=12-2t,PD=$\frac{4}{3}$t;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,t的值为3.6秒;若不存在,t的值填“0”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知k为自然数,把下列各式分解因式:
(x-y)2k+(y-x)2k+2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知抛物线y=$\frac{1}{2}$x2+bx+c与x轴交于A(-3,0),B两点,四边形ABCD是边长为4的正方形,且抛物线的顶点E落在过B的直线1上.
(1)求顶点E的坐标;
(2)将抛物线沿着射线EB方向平移,使顶点仍落在直线1上,且平移后的抛物线过点C,求平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+y={c}_{1}}\\{{a}_{2}x+y={c}_{2}}\end{array}\right.$解为$\left\{\begin{array}{l}{x=5}\\{y=10}\end{array}\right.$,则关于x,y的方程组$\left\{\begin{array}{l}{3{a}_{1}x+2y={a}_{1}+{c}_{1}}\\{3{a}_{2}x+2y={a}_{2}+{c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE 
(1)如图1,连接BE、CD,若BC=2,求BE的长;
(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;
(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.

查看答案和解析>>

同步练习册答案