精英家教网 > 初中数学 > 题目详情
如图,石景山游乐园的观览车半径为25m,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟.某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是多少米?(观览车距最低处地面高度不计).
连接OA,由题意得OA⊥CD,

设旋转4分钟后,此人到达B处,连接OB,则∠AOB=360°×
4
12
=120°,
过B、O分别作BE⊥CD于E,OF⊥BE于F;
∴∠BFO=90°,
∴四边形OFEA为矩形,
∴FE=OA=25,∠BOF=120°-90°=30°;
在Rt△BFO中,
∵OB=25,
∴BF=
1
2
OB=
25
2

∴BE=BF+FE=
25
2
+25=37.5,
∴人距地面37.5m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图PT是⊙O的切线,T为切点,PAB是经过圆心O的割线.
(1)求证:∠PTA=∠BTO;
(2)若PT=4,PA=2,求sinB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是(  )
A.4.75B.4.8C.5D.4
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,AE交⊙O于点F且与⊙O的切线CD互相垂直,垂足为D,连结AC,OC,CB.有下列结论:①∠1=∠2;②OCAE;③AF=OC;④△ADC△ACB.其中结论正确的是______(写出序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
1
3
时,求AD和OC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图AF是⊙O的直径,以OA为直径的⊙C与⊙O的弦AB相交于点D,DE⊥OB,垂足为E,求证:
(1)D是AB的中点;
(2)DE是⊙C的切线;
(3)BE•BF=2AD•ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(-1,0),以线段AB上一点P为圆心作圆与OA,OB均相切,则点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F.
(1)PA与PF是否相等?______(填“是”或“否”);
(2)若F是PB的中点,CF=1.5,则切线PA的长为______.

查看答案和解析>>

同步练习册答案