【题目】如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为( )
A.(14,44) B.(15,44) C.(44,14) D.(44,15)
【答案】A
【解析】
试题分析:该题显然是数列问题.设粒子运动到A1,A2,…An时所用的时间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,由an﹣an﹣1=2n,则a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,an﹣an﹣1=2n,以上相加得到an﹣a1的值,进而求得an来解.
解:设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…,an,an﹣a1=2×n+…+2×3+2×2=2 (2+3+4+…+n),
an=n(n+1),44×45=1980,故运动了1980秒时它到点A44(44,44);
则运动了2010秒时,粒子所处的位置为(14,44).
故选A.
科目:初中数学 来源: 题型:
【题目】某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:
成绩(分) | 35 | 39 | 42 | 44 | 45 | 48 | 50 |
人数(人) | 2 | 5 | 6 | 6 | 8 | 7 | 6 |
根据表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的边长为3,E是BC上一点,BE= ,Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接PA,点Q从点C出发,沿线段CD向点D运动,当PA的长度最小时,CQ的长为( )
A.3 ﹣3
B.3﹣
C.
D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:EF∥AD ,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:
因为EF∥AD,所以∠2=__
又因为∠1=∠2,所以∠1=∠3
所以AB∥__
所以∠BAC+__=180°
因为∠BAC=70°,所以∠AGD=__
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△ECD都是等边三角形,B、C、D在一条直线上。
求证:(1)BE=AD;
(2) △FCH是等边三角形
(3)求∠EMD的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1)请你判断DA与CE的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com