精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形 中,,点EAD边上一点,连接BDCECEBD交于点F,且CEAB,若,则BC的长为__________.

【答案】

【解析】

连接ACBD于点O,由题意可证AC垂直平分BDABD是等边三角形,可得∠BAO=DAO=30°AB=AD=BD=8BO=OD=4,通过证明EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OCBC的长.

如图,连接ACBD于点O

AB=ADBC=DC,∠A=60°
AC垂直平分BDABD是等边三角形
∴∠BAO=DAO=30°AB=AD=BD=8
BO=OD=4
CEAB
∴∠BAO=ACE=30°,∠CED=BAD=60°
∴∠DAO=ACE=30°
AE=CE=6
DE=AD-AE=2
∵∠CED=ADB=60°
∴△EDF是等边三角形
DE=EF=DF=2
CF=CE-EF=4OF=OD-DF=2
OC=,
BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为8ADBC边上的中线,点EAC边上的一点,AE=2,若点M是线段AD上的一个动点,则ME+MC的最小值为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ABC=60°ADCE分别平分∠BAC、∠ACB

1)求∠AOC的度数

2)连接BO,试说明BO平分∠ABC

3)判断ACAECD的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两个港口,水由A流向B,水流的速度是4千米/小时,甲、乙两船同时由A顺流驶向B,各自不停地在A、B之间往返航行,甲在静水中的速度是28千米/小时,乙在静水中的速度是20千米/小时.

设甲行驶的时间为t小时,甲船距B港口的距离为S1千米,乙船距B港口的距离为S2千米,如图为S1(千米)和t(小时)函数关系的部分图象

(1)A、B两港口距离是_____千米.

(2)在图中画出乙船从出发到第一次返回A港口这段时间内,S2(千米)和t(小时)的函数关系的图象

(3)求甲、乙两船第二次(不算开始时甲、乙在A处的那一次)相遇点M位于A、B港口的什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,A(0,4),B(﹣3,0),C(2,0),DB点关于AC的对称点,反比例函数y= 的图象经过D点.

(1)证明四边形ABCD为菱形;

(2)求此反比例函数的解析式;

(3)已知在y=的图象x>0)上一点Ny轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是___________海里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠C=∠EDF60°AB1,现将∠EDF绕点D任意旋转,分别交边ABBC于点EF(不与菱形的顶点重合),连接EF,则BEF的周长最小值是_____.

查看答案和解析>>

同步练习册答案