精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在⊙O中,AB是直径,CD是弦,AB⊥CD,AB=12cm.
(1)F是
CAD
上一点(不与C、D重合),求证:∠CFD=∠COB;
(2)若∠CFD=60°,求CD的长.
分析:(1)已知直径AB⊥CD,由垂径定理知B是弧CD的中,若连接OD,可证得∠COB是∠COD的一半;由圆周角定理知:∠CFD=
1
2
∠COD,由此得证;
(2)若∠CFD=60°,则∠COB=60°,通过解直角三角形即可求得CD的长.
解答:精英家教网(1)证明:连接OD,
∵AB是直径,AB⊥CD,∴
BC
=
BD

∴∠COB=∠DOB=
1
2
∠COD

∴∠CFD=∠COB.

(2)解:Rt△COE中,OC=6cm,∠COE=∠CFD=60°;
∴CE=OC•sin60°=3
3
cm;
∴CD=2CE=6
3
cm.
点评:此题主要考查圆周角定理、垂径定理及解直角三角形的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在?ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=
12
AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠C=90°,D是AC边上一点,且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在?ABCD中,E,F分别AB,CD的中点,连接DE,EF,BF,则图中平行四边形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中画出长宽之比为2:1的矩形,使长边在BC上.(注:保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,已知D是BC边上的点,O为△ABD的外接圆圆心,△ACD的外接圆与△AOB的外接圆相交于A,E两点.求证:OE⊥EC.

查看答案和解析>>

同步练习册答案