【题目】已知二次函数.
(1)求该函数的图象与x轴的交点坐标.
(2)已知A(-9,),B(1,),C(,)都在该函数的图象上,则,,的大小关系为:.
(3)把该函数的图象沿y轴向什么方向平移多少个单位长度后,与x轴只有一个公共点.
科目:初中数学 来源: 题型:
【题目】为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,请根据以上观测数据求观光塔的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,是的内接三角形,于点.请仅用无刻度的直尺,画出中的平分线.(保留作图痕迹,不写作法).
(2)如图2,为的外接圆,是非直径的弦,是的中点,连接,是弦上一点,且,请仅用无刻度的直尺,确定出的内心.(保留作图痕迹,不写作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在矩形 ABCD 中,AB=4,AD=3,连接 AC,动点 Q 以每秒 1 个单位的速度沿 A→B→C 向点 C 匀速运动,同时点 P 以每秒 2 个单位的速度沿 A→C→D 向点 D 匀速运动,连接 PQ,当点 P 到达终点 D 时,停止运 动,设△APQ 的面积为 S,运动时间为 t 秒,则 S 与 t 函数关系的图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尝试探究
如图-,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.
的值为 ;直线与直线的位置关系为 ;
类比延伸
如图,若将图中的绕点顺时针旋转,连接,则在旋转的过程中,请判断的值及直线与直线的位置关系,并说明理由;
拓展运用
若,在旋转过程中,当三点在同一直线上时,请直接写出此时线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店销售复习资料,已知每本复习资料进价为40元,市场调查发现:若以每本50元销售,平均每天可销售90本,在此基础上,若售价每提高1元,则平均每天少销售3本.设涨价后每本的售价为元,书店平均每天销售这种复习资料的利润为元.
(1)涨价后每本复习资料的利润为______元,平均每天可销售______本;
(2)求与的函数关系式;
(3)当复习资料每本售价为多少时,平均每天的利润最大?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.
(1)求⊙O的半径;
(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;
(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.
(1)求抛物线的解析式;
(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
②当k= 时,点F是线段AB的中点;
(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形的边长为,顶点分别在轴、轴的正半轴,抛物线经过两点,点为抛物线的顶点,连接.
(1)求此抛物线的解析式;
(2)直接写出四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com