精英家教网 > 初中数学 > 题目详情
△ABC∽△A′B′C′,,AB边上的中线CD=4cm,△ABC的周长为20cm,△A′B′C′的面积是64cm2,求:
(1)A′B′边上的中线C′D′的长;
(2)△A′B′C′的周长;
(3)△ABC的面积.
(1)8cm    (2)40cm      (3)16cm2

试题分析:(1)∵△ABC∽△A′B′C′,,AB边上的中线CD=4cm,
=
∴C′D′=4cm×2=8cm,
∴A′B′边上的中线C′D′的长为8cm;
(2)∵△ABC∽△A′B′C′,,△ABC的周长为20cm,
=
∴CABC=20cm×2=40cm,
∴△A′B′C′的周长为40cm;
(3)∵△ABC∽△A′B′C′,,△A′B′C′的面积是64cm2
==
∴SABC=64cm2÷4=16cm2
∴△ABC的面积是16cm2
点评:本题主要考查了相似三角形的性质,掌握相似三角形的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:点P为正方形ABCD内部一点,且∠BPC=90°,过点P的直线分别交边AB、边CD于点E、点F.
(1)如图1,当PC=PB时,则SPBE、SPCF SBPC之间的数量关系为 _________ 
(2)如图2,当PC=2PB时,求证:16SPBE+SPCF=4SBPG
(3)在(2)的条件下,Q为AD边上一点,且∠PQF=90°,连接BD,BD交QF于点N,若Sbpc=80,BE=6.求线段DN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.
(1)求证:AF⊥BE;
(2)试探究线段AO、BO、GO的长度之间的数量关系;
(3)若GO:CF=4:5,试确定E点的位置.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.
(1)求证:△COM∽△CBA;    
(2)求线段OM的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h为(  )
A.B.1米C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,巳知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 _________ (结果保留根号).
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,D是△ABC的重心,则下列结论不正确的是(  )
A.AD=2DEB.AE=2DEC.BE=CED.AD:DE=2:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若Rt△ABC,∠C=90°,CD为斜边上的高,AC=m,AB=n,则△ACD的面积与△BCD的面积比的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为(  )
A.3B.4C.3D.5

查看答案和解析>>

同步练习册答案