分析 (一)(1)根据图形旋转前后对应边相等,对应角相等,判定△AEF≌△AE′F,进而根据线段的和差关系得出结论;
(2)先在BE上截取BG=DF,连接AG,构造△ABG≌△ADF,进而利用全等三角形的对应边相等,对应角相等,判定△GAE≌△FAE,最后根据线段的和差关系得出结论;
(二)先根据旋转的性质判定△AEE′是等边三角形,进而利用等边△ABC、等边△AEE′的三线合一的性质,得到$\frac{AN}{AE}$=$\frac{AM}{AB}$和∠BAE=∠MAN,最后判定△BAE∽△MAN,并根据相似三角形对应边成比例,列出比例式求得MN的长.
解答 解:(一)(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则
∠1=∠2,BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠1+∠3=30°,
∴∠2+∠3=30°,即∠FAE′=30°
∴∠EAF=∠FAE′,
在△AEF和△AE′F中,
$\left\{\begin{array}{l}{AE=AE′}\\{∠EAF=∠FAE′}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,
故答案为:30,BE+DF=EF;
(2)如图3,在BE上截取BG=DF,连接AG,
在△ABG和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABE=∠ADF}\\{BG=DF}\end{array}\right.$,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,且AG=AF,
∵∠DAF+∠DAE=30°,
∴∠BAG+∠DAE=30°,
∵∠BAD=60°,
∴∠GAE=60°-30°=30°,
∴∠GAE=∠FAE,
在△GAE和△FAE中,
$\left\{\begin{array}{l}{AG=AF}\\{∠GAE=∠FAE}\\{AE=AE}\end{array}\right.$,
∴△GAE≌△FAE(SAS),
∴GE=FE,
又∵BE-BG=GE,BG=DF,
∴BE-DF=EF,
即线段BE、EF、FD之间的数量关系为BE-DF=EF;
(二)如图4,将△ABE绕点A逆时针旋转60°得到△A′B′E′,则
AE=AE′,∠EAE′=60°,
∴△AEE′是等边三角形,
又∵∠EAF=30°,
∴AN平分∠EAE',
∴AN⊥EE′,
∴直角三角形ANE中,$\frac{AN}{AE}$=$\frac{\sqrt{3}}{2}$,
∵在等边△ABC中,AM⊥BC,
∴∠BAM=30°,
∴$\frac{AM}{AB}$=$\frac{\sqrt{3}}{2}$,且∠BAE+∠EAM=30°,
∴$\frac{AN}{AE}$=$\frac{AM}{AB}$,
又∵∠MAN+∠EAM=30°,
∴∠BAE=∠MAN,
∴△BAE∽△MAN,
∴$\frac{MN}{BE}$=$\frac{AM}{AB}$,即$\frac{MN}{1}$=$\frac{\sqrt{3}}{2}$,
∴MN=$\frac{\sqrt{3}}{2}$.
点评 本题以旋转为背景,考查了全等三角形与相似三角形,考核了学生对图形进行分解、组合的能力,解题关键是抓住图形旋转前后的对应边相等,对应角相等.解题时应注意等边三角形具有三线合一的性质,此类试题的一般解题方法为作辅助线构造全等三角形或相似三角形.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 甲、乙两班都稳定 | B. | 甲班 | C. | 乙班 | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com