精英家教网 > 初中数学 > 题目详情
(2011•葫芦岛)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.

(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
分析:(1)根据概率的求法,找准两点:①全部情况的总数为3;②符合条件的情况数目为1;二者的比值就是其发生的概率;
(2)利用列表的方法列举出所有等可能的结果,再找出小宇所摸球上的数字比小静所摸球上的数字大1的情况数目,两者的比值即为发生得概率.
解答:解:(1)P(摸出标有数字是3的球)=
1
3

(2)用下表列举摸球的所有可能结果:
   小静
小宇
4 5 6
3 (3,4) (3,5) (3,6)
4 (4,4) (4,5) (4,6)
5 (5,4) (5,5) (5,6)
从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
P(小宇“略胜一筹”)=
1
9
点评:此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•葫芦岛)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个
结论是否成立,若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
解答下列问题:
(1)位置Ⅰ中的MN与数轴之间的距离为
2
2
;位置Ⅱ中的半⊙P与数轴的位置关系是
相切
相切

(2)求位置Ⅲ中的圆心P在数轴上表示的数;
(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;
(4)求OA的长.
[(2),(3),(4)中的结果保留π].

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛一模)(1)已知x=-2,求(1-
1
x
x2-2x+1
x
的值.
(2)解方程:
1-x
x-2
+2=
1
x-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛一模)如图,在矩形ABCD中,AD=8,AB=6,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作正方形PQEF,使它与矩形ABCD在BC的同侧,点P,Q同时出发,当点P返回点M时停止运动,点Q也随之停止,设点P,Q运动的时间是t秒(t>0)
(1)用含t的代数式表示线段BQ的长;
(2)设正方形PQEF与矩形ABCD重叠部分的面积为S,求S与t之间的函数关系式;
(3)连接AC,当正方形PQEF与△ADC重叠部分为三角形时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛)根据图所示的程序计算,若输入x的值为64,则输出结果为
-
5
2
-
5
2

查看答案和解析>>

同步练习册答案