精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知正方形ABCD的面积为S.
(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)
(2)用S表示(1)中作出的四边形A1B1C1D1的面积S1
(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四个边形,面积为S2,则S1与S2是否相等,为什么?
分析:(1)根据对称的性质可知.使得点A1和点A关于点B对称,即是连接AB并延长相同的长度找到对应点A′,其它三点同样的方法找到对应点,顺次连接.
(2)设正方形ABCD的边长为a,根据两个正方形边长的比值,利用面积比等于相似比,来求小正方形的面积.
(3)相等.因为一个四边形可以分成两个三角形,根据三角形的面积公式,等底等高的三角形面积相等.
解答:解:(1)如图①所示.

(2)设正方形ABCD的边长为a,
则AA1=2a,S△AA1D1=
1
2
•AA1•AD1=a2精英家教网
同理,S△BB1A1=S△CC1B1=S△DD1C1=a2
∴S1=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S正方形ABCD=5a2=5S.
(本问也可以先证明四边形A1B1C1D1是正方形,再求出其边长为
5
a,从而算出S四边形A1B1C1D1=5S)

(3)S1=S2
理由如下:
首先画出图形②,连接BD、BD1
∵△BDD1中,AB是中线,
∴S△ABD1=S△ABD
又∵△AA1D1中,BD1是中线,精英家教网
∴S△ABD1=S△A1BD1
∴S△AA1D1=2S△ABD
同理,得S△CC1B1=2S△CBD
∴S△AA1D1+S△CC1B1=2(S△ABD+S△CBD)=2S.
同理,得S△BA1B1+S△DD1C1=2S,
∴S2=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S四边形ABCD=5S.
由(2)得,S1=5S.
∴S1=S2
点评:本题是一道综合性很强的题,综合了轴对称,正方形的面积,及四边形,三角形的面积,所以我们学生学知识一定不要机械的学,要会联系起来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案