精英家教网 > 初中数学 > 题目详情
在△ABC中,∠ACB=90°,点A的坐标为(0,2),点B(-3,1)在抛物线y=ax2+ax-2上,点C在x轴上.
(1)求a的值;
(2)求点C的坐标;
(3)若△ABC是等腰直角三角形
①如图1,将△ABC绕顶点A逆时针方向旋转β°(0<β<180°)得到△AB′C′,当点C′(2,1)恰好落在该抛物线上,请你通过计算说明点B′也在该抛物线上.
②如图2,设抛物线与y轴的交点为D、P、Q两点同时从D点出发,点P沿折线D→C→B运动到点B,点Q沿抛物线(在第二、三象限的部分)运动到点B,若P、Q两点的运动速度相同,请问谁先到达点B,为什么?
(1)∵点B(-3,1)在抛物线y=ax2+ax-2上,
∴1=9a-3a-2,
∴a=
1
2

(2)过B作BE⊥x轴,垂足为E,设OC=a,则CE=OE-OC=3-x,
∴∠BEC=∠AOC=90°,
∴∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCE=∠CAO,
∴△BEC△COA,
BE
CO
=
CE
AO

1
a
=
3-x
2

整理得:a2-3a+2=0,
解得:a=1或2,
∴点C的坐标是(-1,0)或(-2,0);
(3)若△ABC是等腰直角三角形,则C的坐标是(-1,0),
①将△ABC绕顶点A逆时针方向旋转β°(0<β<180°)得到△AB′C′,则AC=AC′=
5
,CC′=
10
,∠CAC′=90°,
∴点B′的坐标是(1,-1),
把(1,-1)代入y=
1
2
x2+
1
2
x-2得:
1
2
×1+
1
2
×1-2=-1,
∴点B′也在该抛物线上;
②设抛物线的顶点M,
∵y=
1
2
x2+
1
2
x-2=
1
2
(x+
1
2
2-
17
8

∴M点的坐标为(-
1
2
,-
17
8
),
∴DC+BC=2
5
≈4.42,DM+MB=
5
8
41
+
17
8
4.517,
∴DC+BC<DM+MB,
∵P、Q两点的运动速度相同,
∴P点先到达点B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+c(a≠0)与直线y=kx+b(k≠0)相交于A(2,1)、B(1,-1)两点,你能求出抛物线和直线的函数表达式吗?画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-
3
x+
3
与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,
求:(1)点C的坐标;
(2)图象经过A、B、C三点的二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

丁丁推铅球的出手高度为1.6m,在如图所示的抛物线y=-0.1(x-k)2+2.5上,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

学校大门如图所示是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地4米高处各有一挂校名横匾用的铁环,两铁环的水平距离为6米,则该校门的高度(精确到0.1米)为(  )
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小明把一张长为20cm,宽为10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子.设剪去的正方形边长为x(cm),折成的长方体盒子的侧面积为y(cm2),底面积为S(cm2).
(1)求S与x之间的函数关系式,并求S=44(cm2)时x的值;(结果可保留根式)
(2)求y与x之间的函数关系式;在x的变化过程中,y会不会有最大值?x取何值时取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案