【题目】如图,把平面内一条数轴绕原点逆时针旋转角得到另一条数轴轴和轴构成一个平面斜坐标系.过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点.若点在轴上对应的实数为,点在轴上对应的实数为,则成有序实数对为点的斜坐标.
(1)在某平面斜坐标系中,已知,点的斜坐标为,点与点关于轴对称,求点的斜坐标.
(2)某平面斜坐标系中,已知点,求出点关于轴、轴的对称点点、点的斜坐标.(用含及的式子表示).
(3)直接写出点关于原点对称的点的斜坐标是_________.
【答案】(1) (5,-3); (2),; (3)
【解析】
(1)如图,作点P关于x轴的对称点N,连接PN交x轴于F,作NC∥x轴交y轴于C,作ND∥y轴交x轴于D.求出OC,OD即可解决问题;
(2)利用(1)中的方法解决问题即可;
(3)根据斜坐标的定义写出坐标即可.
(1)如图,作点P关于x轴的对称点N,连接PN交x轴于F,作NC∥x轴交y轴于C,作ND∥y轴交x轴于D.
∵DN∥BC∥PA,
∴∠PAF=∠NDF,
∵PF=NF,∠AFP=∠NFD,
∴△AFP≌△DFN(AAS),
∴AF=DF,PA=DN=OC=b,
∵在Rt△AFP中,∠PAF=∠BOA=θ=60°,
∴AF=DF=bcos60°=b,
∴OD=OA+ AF+DF =,
∴,
∵,
∴点N的斜坐标为(5,-3);
(2)如图,作点P关于x轴的对称点Q,连接PQ交x轴于F,作QC∥x轴交y轴于C,作QD∥y轴交x轴于D.
∵DQ∥BC∥PA,
∴∠PAF=∠QDF,
∵PF=QF,∠AFP=∠QFD,
∴△AFP≌△DFQ(AAS),
∴AF=DF,PA=DQ=OC=y,
∵在Rt△AFP中,∠PAF=∠BOA=θ,
∴AF=DF=,
∴DO=OA+AF+FD=
∴点Q的斜坐标为,
如图,作点P关于y轴的对称点R,连接PR交轴于E,作RH∥轴交y轴于H,作RG∥轴交轴于G.
同理可证得△EBP≌△EHR(AAS),
∴BE=EH,PB=RH=OA=,
∵在Rt△EBP中,∠EBP=∠BOA=θ,
∴BE=EH =cos,
∴HO=OB+BE+EH=,
∴点R的坐标为;
(3)如图,点P关于原点的对称点,作∥轴交轴于M.
∵∥PB∥OA,
∴△≌△PBO,
∴,,
∴关于原点对称的点的斜坐标是,
故答案为:.
科目:初中数学 来源: 题型:
【题目】小明正在做一个半径为米的地球模型.
(1)他想用一根铁丝围住地球模型的赤道,大约需要多少的铁丝?如果要把这个模型的半径增加米,要围住赤道需要增加多长的铁丝?
(2)假设真的为地球赤道做一个铁箍,大约要多长的铁丝?如果将铁箍所围的半径增加米,那么需要增加多长的铁丝?(地球半径约为千米)
(3)比较(1)(2)的结果,请叙述一下你发现了什么?
(4)如果小明做的地球的模型的半径为,如果地球体积是地球模型体积的倍,求的值.(球的体积公式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的顶点的坐标为,点的坐标为,点在第一象限内,对角线与轴平行,直线与轴、轴分别交于点.将菱形沿轴向左平移个单位.当点落在的内部时(不包括三角形的边),则的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线的解析式为,分别交轴、轴于点.
(1)写出两点的坐标,并画出直线的图象.(不需列表);
(2)将直线向左平移4个单位得到交轴于点.作出的图象,的解析式是___________.
(3)过的顶点能否画出直线把分成面积相等的两部分?若能,可以画出几条?直接写出满足条件的直线解析式.(不必在图中画出直线)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
A.7cm
B.10cm
C.12cm
D.22cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC外切于⊙O,切点分别为点D,E,F,∠A=60°,BC=7,⊙O的半径为.求:(1)求BF+CE的值; (2)求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com