【题目】如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE=AB.
(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;
(3)若AC=8,∠E=15°,求三角形ABE的面积.
【答案】(1)详见解析;(2)详见解析;(3)16.
【解析】
(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;
(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;
(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG=4,根据三角形面积公式可得结论.
(1)解:如图所示;
(2)证明:∵AB=AC,AE=AB,
∴AE=AC,
∵AF是∠EAC的平分线,
∴∠EAF=∠CAF,
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠E=∠ACF,
∵AB=AE,
∴∠ABE=∠E,
∴∠ABE=∠ACF.
(3)解:如图,过E作EG⊥AB,交BA的延长线于G,
∵AB=AC=AE=8,
∴∠ABE=∠AEB=15°,
∴∠GAE=∠ABE+∠AEB=30°,
∴EG=AE=4,
∴三角形ABE的面积===16.
科目:初中数学 来源: 题型:
【题目】已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x满足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:设x-4=a,x-9=b,则(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
请仿照上面的方法求解下面问题:
(1)若x满足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是15,分别以MF、DF作正方形,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,一次函数y=kx+b的图象与反比例函数的图象交于, 两点.
(1)求一次函数和反比例函数的解析式;
(2)设点和是反比例函数图象上两点,若,求的值;
(3)若M(x1,y1)和N(x2,y2)两点在直线AB上,如图2所示,过M、N两点分别作y轴的平行线交双曲线于E、F,已知﹣3<x1<0,x2>1,请探究当x1、x2满足什么关系时,MN∥EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有_____(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等边三角形,P 是 BC 上任意一点,PD⊥AB,PE⊥AC,连接 DE.记△ADE 的周长为,四边形 BDEC 的周长为,则与的大小关系是( )
A. =B. >C. <D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=AD,CB=CE.
(1)当∠ABC=90°时(如图①),∠EBD= °;
(2)当∠ABC=n°(n≠90)时(如图②),求∠EBD 的度数(用含 n 的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(-1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(-2,2),第四次向左跳动至A4(3,2)依照此规律跳动下去,点A第2020次跳动至A2020的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com