精英家教网 > 初中数学 > 题目详情

【题目】如图所示,⊙O的直径AB=10cm,弦AC=6cm,ACB的平分线交⊙O于点D,

(1)求证:△ABD是等腰三角形;

(2)CD的长.

【答案】(1)详见解析;(2)CD=7

【解析】

(1)连接OD根据角平分线的定义得到∠ACD=∠BCD根据圆周角定理等腰三角形的定义证明即可

(2)作AECDE根据等腰直角三角形的性质求出AD根据勾股定理求出AECEDE结合图形计算即可得到答案

1)连接OD

AB为⊙O的直径,∴∠ACB=90°.

CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得:∠AOD=2∠ACD=90°,∠BOD=2∠BCD=90°,∴∠AOD=∠BOD=90°,∴DA=DB即△ABD是等腰三角形

(2)作AECDE

AB为⊙O的直径,∴∠ADB=90°,∴ADAB=5

AECD,∠ACE=45°,∴AE=CE=AC=3.在Rt△AEDDE,∴CD=CE+DE=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径 ,点C在⊙O上,过点OBC于点E,交⊙O于点DCDAB.

(1)求证:EOD的中点;

(2)CB=6,求四边形CAOD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.

⑴用含a的式子表示b

⑵当a=﹣时,y=ax2+bx+c的函数值为正整数,求满足条件的x值.

⑶若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当EAB的面积最大时,E点的横坐标为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCECD的中点,连接AEBEBEAE,延长AEBC的延长线于点F

求证:(1)FCAD(2)ABBC+AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点PPF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.

(1)求抛物线的解析式;

(2)PE的长最大时m的值.

(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC=+1D=60°,则两条斜边的交点E到直角边BC的距离是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东,若小岛周围海里内有暗礁,问该轮船是否能一直向东航行?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果

下面有三个推断:

①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,B=C=65°BD=CEBE=CF,若A=50°,则DEF的度数是(  )

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案