精英家教网 > 初中数学 > 题目详情

已知:⊙O1与⊙O2外切于点P,过点P的直线分别交⊙O1、⊙O2于点B、A,⊙O1的切线BN交⊙O2于点M、N,AC为⊙O2的弦.
(1)如图(1),设弦AC交BN于点D,求证:AP•AB=AC•AD;
(2)如图(2),当弦AC绕点A旋转,弦AC的延长线交直线BN于点D时,试问:AP•AB=AC•AD是否仍然成立?证明你的结论.


解:(1)过点P作两圆的切线EF,连接CP并延长交⊙O1于点G,连接BG.
∴∠1=∠C,∠2=∠G.
∵⊙O1的切线BN交⊙O2于点M、N,
∴∠3=∠G.
又∠1=∠2,
∴∠C=∠3.
又∠CAP=∠BAD,
∴△APC∽△ADB.

即AP•AB=AC•AD.

(2)过点P作两圆的切线EF,连接NP并延长交⊙O1于点G,连接BG.连接CP,
则∠APF=∠BPE=∠PBN=∠D+∠A,∠CPF=∠A,
则∠APC=∠D.
又∠PAC=∠DAB,
∴△APC∽△ADB.

即AP•AB=AC•AD.
分析:(1)过点P作两圆的切线EF,连接CP并延长交⊙O1于点G,连接BG.根据弦切角定理可以证明∠C=∠B,从而证明△APC∽△ADB,再根据相似三角形的性质即可证明;
(2)过点P作两圆的切线EF,连接NP并延长交⊙O1于点G,连接BG.根据弦切角定理和三角形的外角的性质证明∠APC=∠D,从而根据两角对应相等得到△APC∽△ADB,再根据相似三角形的性质即可证明.
点评:作两圆的公切线是相切两圆中常见的辅助线之一.熟练运用弦切角定理、相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,O2在⊙O1上,AC是⊙O2的直径,直线CB交⊙O1于D,E为AB延长线上一点,连接DE.
(1)请你连接AD,证明:AD是⊙O1的直径;
(2)若∠E=60°,求证:DE是⊙O1的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.精英家教网
(1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF;
(2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE;
(3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:⊙O1与⊙O2相交于点A、B,AC切⊙O2于点A,交⊙O1于点C.直线EF过点B,交⊙O1于点E,交⊙O2于点F.
(1)设直线EF交线段AC于点D(如图1).
①若ED=12,DB=25,BF=11,求DA和DC的长;
②求证:AD•DE=CD•DF;
(2)当直线EF绕点B旋转交线段AC的延长线于点D时(如图2),试问AD•DE=CD•DF是否仍然成立?证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆O1与⊙O2外切,它们的圆心距为16cm,⊙O1的半径是12cm,则⊙O2的半径是
4
4
cm.

查看答案和解析>>

同步练习册答案