精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F.
(1)求证:DF是⊙O的切线;
(2)连接DE,若AB=AC=13,BC=10,求△CDE的面积.
分析:(1)连接OD,AD,根据直径所对的圆周角是直角以及AB=AC,得到DB=DC,OD是△ABC的中位线,所以OD∥AC,再由DF⊥AC得到DF⊥OD,可以证明DF是⊙O的切线.
(2)利用两角对应相等,可以证明△CDE∽△CAB,然后用相似三角形面积的比等于相似比的平方可以求出△CDE的面积.
解答:精英家教网解:(1)连接OD,AD,
∵AB是⊙O的直径,
∴AD⊥BC,
∵AB=AC,
∴DB=DC,
∵OA=OB,
∴OD是△ABC的中位线,
即:OD∥AC,
∵DF⊥AC,
∴DF⊥OD.
∴DF是⊙O的切线.

(2)∵ABDE是⊙O的内接四边形,
∴∠DEC=∠B,又∠C为公共角,
∴△CDE∽△CAB,
∵AB=13,BC=10,由(1)得AD⊥BC,
∴CD=5,
∴AD=12.
S△ABC=
1
2
BC•AD=
1
2
×10×12=60.
∵△CDE∽△CAB,
DE
AB
=
CD
CA
=
5
13

∴S△CDE:S△CAB=25:169.
∴S△CDE=60×
25
169
=
1500
169
点评:本题考查的是切线的判定,(1)利用直径所对的圆周角是直角以及中位线的性质,得到OD∥AC,再根据已知条件证明DF⊥OD,可以证明DF是圆的切线.(2)先证明两三角形相似,再用相似三角形的性质求出△CDE的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.

查看答案和解析>>

同步练习册答案