精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则:
(1)DC=
 
;(2)第n个矩形的边长分别是
 
分析:(1)AM⊥MB,且M为CD的中点,AM=MB,可得∠DAM=∠DMA,可得AD=DM=
1
2
CD,再根据矩形ABCD的周长为30,可求的CD的长.
(2)由第一问求得:第一个矩形的长为:10,宽为5,根据三角形中位线定理,PQ=5,则宽为
5
2
,由此以此类推可得第n个矩形的边长.
解答:解:(1)∵AM⊥MB,且M为CD的中点,AM=MB,
∴∠DAM=∠DMA,∴AD=DM=
1
2
CD,
又已知矩形ABCD的周长为30,所以CD=10,
故答案为10,

(2)由第一问求得:第一个矩形的长为:10,宽为5,
又点P、Q是AM、BM的中点,所以之后得到的矩形长宽比例为2:1,
在△ABM中,PQ=5,则宽为
5
2

则可得出:第n个矩形的边长分别是10×(
1
2
)
n-1
,5×(
1
2
)
n-1

故答案为10×(
1
2
)
n-1
,5×(
1
2
)
n-1
点评:本题考查了矩形的性质和三角形的中位线定理,难度较大,关键掌握三角形中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案