精英家教网 > 初中数学 > 题目详情
已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°
(1)求证:△DEF为等腰直角三角形;
(2)求证:S四边形AEDF=S△BDE+S△CDF
(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗?请画图说明理由.
分析:(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;
(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;
(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.
解答:(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边AB的中点,
∴AD⊥BC,AD=BD,∠1=45°,
∴∠1=∠B=45°,
∵∠EDF=90°,
∴∠2+∠3=90°,
又∵∠3+∠4=90°,
∴∠2=∠4,
在△BDE和△ADF中,
∠1=∠B
AD=BD
∠2=∠4

∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF为等腰直角三角形;

(2)解:同理可证,△ADE≌△CDF,
所以,S四边形AEDF=S△ADF+S△ADE=S△BDE+S△CDF
即S四边形AEDF=S△BDE+S△CDF

(3)解:仍然成立.如图,连接AD,
∵∠BAC=90°,AB=AC,D是斜边BC的中点,
∴AD⊥BC,AD=BD,∠1=45°,
∵∠DAF=180°-∠1=180°-45°=135°,
∠DBE=180°-∠ABC=180°-45°=135°,
∴∠DAF=∠DBE,
∵∠EDF=90°,
∴∠3+∠4=90°,
又∵∠2+∠3=90°,
∴∠2=∠4,
在△BDE和△ADF中,
∠DAF=∠DBE
AD=BD
∠2=∠4

∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF为等腰直角三角形.
点评:本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图△ABC中,AD为△ABC的角平分线,求证:AB•DC=AC•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•河北)已知:如图△ABC中,∠A的平分线AD交BC于D,⊙O过点A,且与BC相切于D,与AB、AC分别相交于E、F,AD与EF相交于G.
(1)求证:AF•FC=GF•DC;
(2)已知AC=6cm,DC=2cm,求FC、GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC中,∠ACB=90°,D是AC上任意一点,DE⊥AB于E,M,N分别是BD,CE的中点,求证:MN⊥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求证:∠ACD=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图△ABC中,D、E、F分别是三角形三边中点,△ABC的周长为30,面积为48,则△DEF的周长为
15
15
,面积为
12
12

查看答案和解析>>

同步练习册答案