【题目】如图,△ABC中,D是BC边上的一点,E为AD的中点,过A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
【答案】(1)证明见解析;(2)当AB=AC时,四边形AFBD是矩形,证明见解析.
【解析】试题分析:(1)根据平行线的性质得到∠AFE=∠DCE,由中点的定义得到AE=DE,根据三角形全等的判定易证得△AFE≌△DCE,利用全等三角形的性质得AF=DC,而AF=BD,即可得到D是BC的中点;
(2)在(1)的基础上,根据全等三角形的性质和有三个角都是直角的四边形是矩形.
试题解析:证明:∵AF∥BC,∴∠AFE=∠ECD.
又∵E为AD的中点,∴AE=DE.
在△AFE与△DCE中,∵
∴△AFE≌△DCE(AAS),∴AF=CD.
又∵AF=BD,∴BD=CD.
(2)解:当AB=AC时,四边形AFBD是矩形.
证法一:由(1)知,D为BC的中点,又∵AB=AC,
∴AD⊥BC.
∵AF∥BC,∴∠DAF=∠ADB=90°.
∵△AFE≌△DCE(已证),∴CE=EF.
∴DE为△BCF的中位线,∴DE∥BF.
∴∠FBD=∠EDC=90°,
∴四边形AFBD是矩形.
证法二:∵AF=BD,AF∥BD,
∴四边形AFBD是平行四边形.
由(1)知,D为BC的中点,又∵AB=AC,
∴AD⊥BC(三线合一),即∠BDA=90°.
∴AFBD是矩形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,,,把一条长为2016个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E
(1)证明点C在圆O上;
(2)求tan∠CDE的值;
(3)求圆心O到弦ED的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b=;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知单位长度为1的方格中有三角形ABC.
(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;
(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直线为坐标轴,建立如图1的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.
(1)求证:△BCQ≌△ODQ;
(2)求点P的坐标;
(3)若将矩形OABC向右平移(图2),得到矩形ABCG,设矩形ABCG与矩形ODEF重叠部分的面积为S,OG=x,请直接写出x≤3时,S与x之间的函数关系式,并且写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1,则四边形BCEF的周长为( )
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:
实验次数 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上频数 | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
相应频率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(1)请将数据补充完整;
实验次数 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上频数 | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
相应频率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(2)画出“兵”字面朝上的频率分布折线图;
(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com