精英家教网 > 初中数学 > 题目详情
16.已知关于x的分式方程$\frac{3x}{x-6}$-2=$\frac{m}{x-6}$的解是正数,求m的取值范围.

分析 根据分式的方程的解法即可求出的x的表达式,然后列出不等式即可求出m的范围.

解答 解:去分母可得:3x-2(x-6)=m
∴3x-2x+12=m
∴x=m-12
将x=m-12代入最简公分母可知:m-12-6≠0,
∴m≠18
∵分式方程的解是正数,
∴m-12>0,
∴m>12
∴m的取值范围为m>12且m≠18

点评 本题考查分式方程的解法,涉及分式方程的増根,不等式的解法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.2sin30°-tan45°-$\sqrt{{{(1-tan60°)}^2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)7-2÷(-$\frac{1}{2}$)+3  
(2)(-34)÷$\frac{9}{4}$×$\frac{4}{9}$+(-16)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:(-1)3×5+(-2)4÷4
(2)计算:-4÷(-$\frac{1}{2}$)2-($\frac{3}{4}$-$\frac{1}{6}$+$\frac{5}{8}$)×24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某店购进一批商品,每件进价20元,在销售过程中发现该商品每周的销售量y(件)与售价x(元)之间满足一次函数关系;当售价为22元时,销量为36件;当售价为24元时,销量为32件.
(1)求y与x的函数关系式;
(2)求该店每周销售这种商品所获得利润w(元)与售价x(元)之间的函数关系式,并求出售价为多少元时,所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:$\sqrt{3}$+$\sqrt{27}$-$\sqrt{12}$
(2)计算:($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$)-$\frac{\sqrt{20}-\sqrt{15}}{\sqrt{5}}$
(3)解方程组:$\left\{\begin{array}{l}{2(x+1)-y=6}\\{x=y-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知在△ABC中,BA=BC,点D是CB延长线上一点,DF⊥AC,垂足为F,DF和AB交于点E.求证:△DBE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,抛物线y=mx2-4mx+4m+3的顶点为A.
(1)求点A的坐标;
(2)将线段OA沿x轴向右平移2个单位长度得到线段O′A′.
①直接写出点O′和A′的坐标;
②若抛物线y=mx2-4mx+4m+3与四边形AOO′A′有且只有两个公共点,结合函数的图象,求m的取值范围.

查看答案和解析>>

同步练习册答案