精英家教网 > 初中数学 > 题目详情

已知点P是直线>0,)上一定点,点A是轴上一动点(不与原点重合),连结PA,过点P作PB⊥PA,交轴于点B,探究线段PA与PB 的数量关系.
【小题1】如图(1),当PA⊥轴时,观察图形发现线段PA与PB的数量关系是__________;
【小题2】当PA与轴不垂直时,在图(2)中画出图形,线段PA与PB 的数量关系是否与(Ⅰ)所得结果相同?写出你的猜想并加以证明;
【小题3】为何值时,线段PA=PB?此时∠POA的度数是多少,为什么?


【小题1】PA=PB.                                          ……2分
【小题2】如图2,过P 作PC⊥轴于C,PD⊥轴于D,设P().
∵∠BPD+∠DPA=∠APB=90°,∠APC+∠DPA=∠CPD=90°,
∴∠APC=∠BPD.∴Rt△APC∽Rt△BPD.                 ……4分
.∴.∴PA=PB.              ……6分
【小题3】当=1时,PA=PB,此时∠POA=45°或∠POA=135°.……8分
这是因为 由(Ⅱ)得PA=PB,所以当=1时,PA=PB.
此时Rt△APC≌Rt△BPD,∴PC=PD,
即点P到轴、轴的距离相等,所以直线=1)平分一、三象限的夹角.
∴∠POA=45°或∠POA=135°(如图3).                 ……10分

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知点O是直线AB上一点,OC,OD是两条射线,且∠AOC=∠BOD,则∠AOC与∠BOD是对顶角吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A是直线y=-3x+6与y轴的交点,点B在第四象限且在直线y=-3x+6上,线段AB的长度是3
5
.将直线y=-3x+6绕点A旋转,记点B的对应点是B1
(1)若点B1与B关于y轴对称,求点B1的坐标;
(2)若点B1恰好落在x轴上,求sin∠B1AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O是直线AB上的一点,∠BOC=40°,OD、OE分别是∠BOC、∠AOC的角平分线.
(1)求∠AOE的度数;
(2)写出图中与∠EOC互余的角;
(3)∠COE有补角吗?若有,请把它找出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C,E,F在直线AB的同侧(如图1所示)时.试说明∠BOE=2∠COF;
(2)当点C与点E,F在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;
(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=(60-
2n
3
,则∠DOE的度数是
(30+
5
3
n)°或(150+
1
3
n)°
(30+
5
3
n)°或(150+
1
3
n)°
(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C、E、F在直线AB的同侧(如图1所示)
①若∠COF=25°,求∠BOE的度数.
②若∠COF=α°,则∠BOE=
°.
(2)当点C与点E、F在直线AB的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.

查看答案和解析>>

同步练习册答案