精英家教网 > 初中数学 > 题目详情

如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).
(Ⅰ)求抛物线C的解析式;
(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与射线EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;
(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.

解:(Ⅰ)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点
∴9a-3b+3=0且a-b+3=0
解得a=1,b=4
∴抛物线的解析式为y=x2+4x+3

(Ⅱ)由(Ⅰ)配方得y=(x+2)2-1
∴抛物线的顶点M(-2,-1)
∴直线OM的解析式为y=x
于是设平移的抛物线的顶点坐标为(h,h),
∴平移的抛物线解析式为y=(x-h)2+h,.

①当抛物线经过点E时,
∵E(0,9),
∴h2+h=9,
解得
∴当 时,
平移的抛物线与射线EF只有一个公共点.

②当抛物线与射线EF只有一个公共点时,
由方程组y=(x-h)2+h,y=-2x+9.
得 x2+(-2h+2)x+h2+h-9=0,
∴△=(-2h+2)2-4(h2+h-9)=0,
解得h=4.
此时抛物线y=(x-4)2+2与射线EF唯一的公共点为(3,3),符合题意.
综上:平移的抛物线与射线EF只有一个公共点时,
顶点横坐标的值或取值范围是 h=4或

(Ⅲ)将抛物线平移,当顶点至原点时,其解析式为y=x2
设MN的解析式为y=kx+3(k≠0).
假设存在满足题设条件的点P(0,t),过P作GH∥x轴,分别过M,N作GH的垂线,垂足为G,H.
∵△PMN的内心在y轴上,
∴∠GMP=∠MPQ=∠QPN=∠HNP,
∴△GMP∽△HNP,
=
==
∴2kxE•xF=(t-3)(xE+xF
由y=x2,y=kx+3.得x2-kx-3=0.
∴xE+xF=k,xE•xF=-3.
∴2k(-3)=(t-3)k,
∵k≠0,
∴t=-3.
∴y轴的负半轴上存在点P(0,-3),使△PMN的内心在y轴上.
分析:(Ⅰ)将A(-3,0)、B(-1,0),代入y=ax2+bx+3求出即可,再利用平方法求出顶点坐标即可;
(Ⅱ)配方后即可确定其顶点坐标,然后利用平移规律确定函数的解析式,然后根据射线与抛物线有唯一的公共点求得h的值或取值范围即可;
(Ⅲ)将抛物线平移,当顶点至原点时,其解析式为y=x2,设MN的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),过P作GH∥x轴,分别过M,N作GH的垂线,垂足为G,H.根据△PMN的内心在y轴上,得到∠GMP=∠MPQ=∠QPN=∠HNP,从而△GMP∽△HNP,利用相似三角形对应边成比例即可列出有关t的方程求解即可.
点评:此题主要考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案