精英家教网 > 初中数学 > 题目详情
图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形
【小题1】图②中的阴影部分的面积为                                         
【小题2】观察图②请你写出三个代数式(m+n)2、(m-n)2、mn之间的等量关系是
                          
【小题3】若x+y=5,xy=2,则(x-y)2         
【小题4】实际上有许多代数恒等式可以用图形的面积来表示.
如图③,它表示了                                         

【小题5】试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2
(此题6分)

【小题1】(m-n)2
【小题2】(m-n)2=(m+n)2-4mn
【小题3】17
【小题4】(m+n)(2m+n)=2m2+3mn+n2
【小题5】如图所示:
解析:
(1)阴影部分是正方形,正方形的边长=(a-b),所以面积=(m-n)2
(2),所以
(m-n)2=(m+n)2-4mn。
(3)(x-y)2=(2-
(4)把大长方形的面积分成几个小长方形的面积和来求。
(5) 解:画长方形的两边分别为(2m+n)和(m+2n),如图所示,只要长方形的一组邻边能正确表示出来即可,其他方法,酌情给分,  此小题2分
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.

(1)观察图②,你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn
(2)根据(1)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2=
29

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.
(1)图b中的阴影部分面积为
m2-2mn+n2或(m-n)2

(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是
(m+n)2
=
(m-n)2
+4mn

(3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算:x-y=
±5

(4)实际上有许多代数恒等式可以用图形的面积来表示,如图C,它表示了
2m2+3mn+n2=(2m+n)(m+n),试画出一个几何图形的面积是a2+4ab+3b2,并能利用这个
图形将a2+4ab+3b2进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块形状大小完全一样的小长方形,然后按图b形状拼成一个大正方形.
(1)你认为图b中的阴影部分的正方形的边长等于多少?
(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.
(3)已知m+n=9,mn=14,求(m-n)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示)
方法1:
(m-n)2
(m-n)2

方法2:
(m+n)2-4mn
(m+n)2-4mn

(2)根据(1)中结论,请你写出下列三个代数式之间的等量关系;代数式:(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(3)根据(2)题中的等量关系,解决如下问题:已知a+b=8,ab=7,求a-b和a2-b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法求图2中阴影部分的面积.
(m-n)2
(m-n)2

(m+n)2-4mn
(m+n)2-4mn

(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

同步练习册答案