精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM精英家教网
求证:(1)△ACM≌△BCM;
(2)AD•BE=DE•BC;
(3)BM2=MN•MF.
分析:(1)要证明△ACM≌△BCM,只要证明∠ACM=∠BCM就可以;
(2)要证明AD•BE=DE•BC,只要证明△ADE∽△CBE即可;
(3)要证明BM2=MN•MF,主要求证△AMF∽△NMA即可.
解答:精英家教网证明:(1)∵直径CD⊥AB,
∴AC=BC.
∴∠ACM=∠BCM.
∴△ACM≌△BCM.(4分)

(2)∵∠DAB=∠ECB∠ADC=∠EBC,
∴△ADE∽△CBE.
AD
BC
=
DE
BE

∴AD•BE=DE•BC.

(3)连接AF,
∵BF=AC,
AB
+
AF
=
AF
+
CF

AB
=
CF

∴∠F=∠ABC.
又∵∠CAM=∠CBM,
∴∠F=∠MAN.
∵∠AMF=∠NMA,
∴△AMF∽△NMA.
AM
NM
=
MF
MA

∴AM2=MN•MF.(9分)
又∴BM=AM.
∴BM2=MN•MF.(10分)
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
证明线段的乘积相等可以转化为证明三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案